
Chin. Ann. Math.
3?B(?), 201?, 1–20
DOI: 10.1007/s11401-007-0001-x

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 201?
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Abstract Assume M is a closed, connected and smooth Riemannian manifold. We
consider the evolutionary Hamilton-Jacobi equation{

∂tu(x, t) + H(x, u(x, t), ∂xu(x, t)) = 0, (x, t) ∈M × (0,+∞),

u(x, 0) = ϕ(x),

where ϕ ∈ C(M) and the stationary one

H(x, u(x), ∂xu(x)) = 0,

where H(x, u, p) is continuous, convex and coercive in p, uniformly Lipschitz in u. By
introducing a solution semigroup, we provide a representation formula of the viscosity
solution of the evolutionary equation. As its applications, we obtain a necessary and
sufficient condition for the existence of the viscosity solutions of the stationary equations.
Moreover, we prove a new comparison theorem depending on the neighborhood of the
projected Aubry set essentially, which is different from the one for the Hamilton-Jacobi
equation independent of u.
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1 Introduction and main results

The study of the theory of viscosity solutions of the following two forms of Hamilton-Jacobi

equations

∂tu(x, t) +H(x, u(x, t), ∂xu(x, t)) = 0, (1.1)

and

H(x, u(x), ∂xu(x)) = 0 (1.2)

has a long history. There are many celebrated results on the existence, uniqueness, stability

and large time behavior problems for the viscosity solutions (see [1, 9–11] for instance).
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For the case with the Hamiltonian independent of u, its characteristic equation is the Hamil-

ton equation. For the case with the Hamiltonian depending on u, the characteristic equation

is called the contact Hamilton equation. In [23], the authors introduced an implicit variation-

al principle for the contact Hamilton equation. Based on that, a representation formula was

provided for the viscosity solution of the evolutionary equation in [24]. The existence of the

solutions for the ergodic problem was also proved. In [25], the Aubry-Mather theory was de-

veloped for contact Hamiltonian systems with strictly increasing dependence on u. In [26], the

authors further studied the strictly decreasing case, and discussed large time behavior of the

viscosity solution of the evolutionary case.

In order to get the C1-regularity of the minimizers, it was assumed that H(x, u, p) is of class

C3 in [23]. The results in [24–26] are based on the implicit variational principle established

in [23]. Thus, all of them require the contact Hamiltonian to be of class C3. This paper is

devoted to reducing the dynamical assumptions on the Hamiltonian: C3, strictly convex and

superlinear to the standard PDE assumptions: continuous, convex and coercive. In this general

case, the contact Hamiltonian equation can not be defined.

For the classical Hamilton-Jacobi (HJ) equation with time-independence, the related prob-

lems were considered in [12, 14]. Different from the previous works [12, 14], one has to face

certain new difficulties due to the appearance of the Lavrentiev phenomenon caused by time-

dependence. In addition, different from [24–26], we have not compactness of minimizers, which

is a crucial ingredient in [24–26].

By combining dynamical and PDE approaches, we provide a representation formula of the

viscosity solution of the evolutionary equation, which can be referred to as an implicit Lax-

Oleinik semigroup. As its applications, we obtain a necessary and sufficient condition for the

existence of the viscosity solutions of the stationary equations. It is well known that the

comparison theorem plays a central role in the viscosity solution theory. We prove a new

comparison result depending on a neighborhood of the projected Aubry set essentially. An

example is constructed to show that the requirement of the neighborhood is necessary for a

special class of Hamilton-Jacobi equations that do not satisfy the “proper” condition introduced

in [9]. Comparably, the viscosity solution is determined completely by the projected Aubry set

itself for the “proper” cases ( [27, Theorem 1.6]).

Throughout this paper, we assume M is a closed (compact without boundary), connected

and smooth Riemannian manifold and H : T ∗M × R→ R satisfies

(C): H(x, u, p) is continuous;

(CON): H(x, u, p) is convex in p, for any (x, u) ∈M × R;

(CER): H(x, u, p) is coercive in p, i.e. lim‖p‖→+∞(infx∈M H(x, 0, p)) = +∞;

(LIP): H(x, u, p) is Lipschitz in u, uniformly with respect to (x, p), i.e., there exists λ > 0 such

that |H(x, u, p)−H(x, v, p)| ≤ λ|u− v|, for all (x, p) ∈ T ∗M and all u, v ∈ R.

Correspondingly, one has the Lagrangian associated to H:

L(x, u, ẋ) := sup
p∈T∗xM

{〈ẋ, p〉 −H(x, u, p)}.

A list of notations is provided at the end of this section.
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Remark 1.1. Due to the absence of superlinearity of H, the Lagrangian L may take the value

+∞. Define

dom(L) := {(x, ẋ, u) ∈ TM × R | L(x, u, ẋ) < +∞}.

Then L satisfies the following properties (see [12, Proposition 2.7] for instance)

(LSC): L(x, u, ẋ) is lower semicontinuous, and continuous on the interior of dom(L);

(CON): L(x, u, ẋ) is convex in ẋ, for any (x, u) ∈M × R;

(LIP): L(x, u, ẋ) is Lipschitz in u, uniformly with respect to (x, ẋ), i.e., there exists λ > 0 such

that |L(x, u, ẋ)− L(x, v, ẋ)| ≤ λ|u− v|, for all (x, ẋ, u) ∈ dom(L).

Remark 1.2.

(1) The assumption (CER) is equivalent to the following statement: for each R > 0, there

exists K > 0 such that for any |u| < R and ‖p‖ > K, we have H(x, u, p) > R. In fact, by

(CER), for each R > 0, there exists K > 0 such that for ‖p‖ > K, H(x, 0, p) > (1 + λ)R.

By (LIP), for any |u| < R,

H(x, u, p) ≥ H(x, 0, p)− λ|u| > R.

The converse direction is obvious.

(2) dom(L) is independent of u. More precisely, given (x, ẋ) ∈ TM , if L(x, u0, ẋ) < +∞ for

a given u0 ∈ R, then for any u ∈ R,

L(x, u, ẋ) ≤ sup
p∈T∗xM

{〈ẋ, p〉 −H(x, u0, p)}+ λ|u− u0|

= L(x, u0, ẋ) + λ|u− u0| < +∞.

Thus, there holds

dom(L) = {(x, ẋ) ∈ TM | L(x, 0, ẋ) < +∞)} × R.

1.1 An implicit Lax-Oleinik semigroup

Consider the viscosity solution of the Cauchy problem{
∂tu(x, t) +H(x, u(x, t), ∂xu(x, t)) = 0, (x, t) ∈M × (0,+∞).

u(x, 0) = ϕ(x), x ∈M.
(CPH)

We have the following result.

Theorem 1. Assume H : T ∗M × R → R satisfies (C)(CON)(CER)(LIP). The following

implicit backward Lax-Oleinik semigroup T−t : C(M)→ C(M), via

T−t ϕ(x) = inf
γ(t)=x

{
ϕ(γ(0)) +

∫ t

0

L(γ(τ), T−τ ϕ(γ(τ)), γ̇(τ))dτ

}
(T-)

is well-defined. The infimum is taken among absolutely continuous curves γ : [0, t] → M with

γ(t) = x. Moreover,
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(i) if the initial condition ϕ is continuous, then u(x, t) := T−t ϕ(x) represents the unique

continuous viscosity solution of (CPH).

(ii) If ϕ is Lipschitz continuous, then u(x, t) := T−t ϕ(x) is also locally Lipschitz continuous

on M × [0,+∞).

The main difficulties to prove Theorem 1 are stated as follows.

• Compared to the contact HJ equation under the Tonelli conditions, the contact Hamilton

flow can not be defined. Consequently, we do not have the compactness of the minimizing

orbit set, which plays a crucial role in the previous work on contact HJ equations (see [24,

Lemma 2.1]).

• Compared to the classical HJ equation in less regular cases (see [12, 14]), the backward

Lax-Oleinik semigroup is implicit defined, which causes t-dependence of the Lagrangian.

Due to the Lavrentiev phenomenon, it is not direct to prove the Lipschitz continuity of

the minimizers of T−t ϕ(x) (see [2] for various counterexamples).

Under the general assumptions (C) (CON) (CER) and (LIP), the Lipschitz continuity of T−t ϕ(x)

and its minimizers are proved by combining dynamical and PDE approaches, together with a

new variational inequality introduced in [3].

Remark 1.3. Similar to Theorem 1, the forward Lax-Oleinik semigroup can be defined as

T+
t ϕ(x) = sup

γ(0)=x

{
ϕ(γ(t))−

∫ t

0

L(γ(τ), T+
t−τϕ(γ(τ)), γ̇(τ))dτ

}
. (T+)

Use the same argument as [25, Proposition 2.8], one has T+
t ϕ := −T̄−t (−ϕ), where T̄−t denotes

the backward Lax-Oleinik semigroup associated to L(x,−u,−ẋ).

By Theorem 1, if the fixed points of T−t exist, then they are viscosity solutions of

H(x, u(x), ∂xu(x)) = 0. (EH)

Recently, an alternative variational formulation was provided in [6, 7, 21] in light of G.

Herglotz’s work [15], which is related to nonholonomic constraints. By using the Herglotz

variational principle, various kinds of representation formulae for the viscosity solutions of (1.1)

were also obtained in [16]. For simplicity, we will omit the word “viscosity” if it is not necessary

to be mentioned.

1.2 An existence result for the solutions of (EH)

Remark 1.4. Let H : T ∗M ×R→ R satisfy (C)(CER)(LIP). According to the Perron method

[17], if (EH) has a Lipschitz subsolution f and a Lipschitz supersolution g such that f ≤ g.

Then the equation (EH) admits a Lipschitz viscosity solution.

In light of [17], we introduce another necessary and sufficient condition for (EH) to admit

solutions.

Theorem 2. Let H : T ∗M ×R→ R satisfy (C)(CON)(CER)(LIP). The following statements

are equivalent:
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(1) (EH) admits Lipschitz solutions;

(2) There exist two continuous functions ϕ and ψ such that T−t ϕ ≥ C1 and T−t ψ ≤ C2, where

C1, C2 are constant independent of t and x;

(3) There exist two continuous functions ϕ and ψ, and t1, t2 > 0 such that T−t1ϕ ≥ ϕ and

T−t2ψ ≤ ψ.

If (EH) admits a solution u, one can take u as the initial function. The statement (2) and

(3) hold true obviously. Thus, we only need to show the opposite direction, which will be proved

in Section 3. The main novelty of Theorem 2 is that the lower bound of T−t ϕ is not required

to be less than or equal to the upper bound of T−t ψ.

1.3 The Aubry set

We denote by S− and S+ the set of all backward weak KAM solutions and the set of all forward

weak KAM solutions of (EH) respectively. See Appendix D for their definitions and relations

with viscosity solutions. In the discussion below, we need to introduce the following assumption

(S): The set S− is nonempty. Namely, (EH) admits a solution.

Definition 1.5. Let u− ∈ S−, u+ ∈ S+. We define the projected Aubry set with respect to u−

by

Iu− := {x ∈M : u−(x) = lim
t→+∞

T+
t u−(x)}.

Similarly, we define the projected Aubry set with respect to u+ by

Iu+
:= {x ∈M : u+(x) = lim

t→+∞
T−t u+(x)}.

In particular, if u+(x) = limt→+∞ T+
t u−(x) and u−(x) = limt→+∞ T−t u+(x), then

Iu− = Iu+
,

which is denoted by I(u−,u+), following the notation introduced by Fathi [13].

Theorem 3. Assume H : T ∗M×R→ R satisfies (C)(CON)(CER)(LIP) and (S). Let u− ∈ S−.

Then

(1) the limit function limt→+∞ T+
t u−(x) exists and it is a forward weak KAM solution. For

each u+ ∈ S+, the limit function limt→+∞ T−t u+(x) exists and it is a backward weak

KAM solution of (EH);

(2) both Iu− and Iu+ are nonempty.

By Remark 1.3, we only need to prove Theorem 3 for T+
t u−(x) and Iu− .

1.4 A comparison result for the solutions of (EH)

In this part, we are concerned with further properties of the viscosity solution for a special class

of Hamilton-Jacobi equations that do not satisfy the proper condition:

H(x, r, p) 6 H(x, s, p) whenever r 6 s.

We assume H : T ∗M × R→ R satisfies (C), (CON), (CER), (LIP) and
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(STD): H(x, u, p) is strictly decreasing in u.

Under the assumptions above, the solution of H(x, u, ∂xu) = 0 is not unique (see e.g., Example

(E1) below). The following result provides a comparison among different solutions.

Theorem 4. Let v1, v2 ∈ S−.

(1) If v1 ≤ v2, then ∅ 6= Iv2 ⊆ Iv1 ;

(2) If there is a neighborhood O of Iv2 such that v1|O ≤ v2|O, then v1 ≤ v2 everywhere;

(3) If Iv1 = Iv2 and v1|O = v2|O, then v1 = v2 everywhere.

In order to explain the necessity of the neighbourhood O, we consider the following example

−λu(x) +
1

2
|u′(x)|2 + V (x) = 0, x ∈ S ' (−1, 1], (E1)

where S denotes a flat circle with the fundamental domain (−1, 1], and V (x) is the restriction of

x2/2 on S. Then H(x, u, p) = −λu+ |p|2/2 + V (x) defined on T ∗S×R is Lipschitz continuous.

Assume λ > 2, then two viscosity solutions of (E1) are

u1(x) =
λ+
√
λ2 − 4

2
V (x), u2(x) =

λ−
√
λ2 − 4

2
V (x).

It can be shown that Iu1
= Iu2

= {0}, although u1 6= u2 on S. A detailed analysis of Example

(E1) is given in Section 6 below.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1. To achieve

that, we need some technical lemmas whose proofs are given in Appendix B and C. Theorem

2, Theorem 3 and Theorem 4 are proved in Section 3, Section 4 and Section 5 successively. In

addition, we give some basic results on the existence and regularity of the minimizers of one

dimensional variational problems in Appendix A, and we also provide some basic properties of

weak KAM solution and viscosity solution in Appendix D for the reader’s convenience.

We list notations in the present paper:

� diam(M) denotes the diameter of M ;

� d(x, y) denotes the distance between x and y induced by the Riemannian metric g on M ;

� ‖ · ‖ denotes the norms induced by g on both tangent and cotangent spaces of M ;

� B(v, r) stands for the open norm ball on TxM centered at v ∈ TxM with radius r, and

B̄(v, r) stands for its closure;

� C(M) stands for the space of continuous functions on M ;

� Lip(M) stands for the space of Lipschitz continuous functions on M ;

� ‖ · ‖∞ stands for the supremum norm of the vector-valued function on its domain.
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2 An implicit Lax-Oleinik semigroup

In this part, we are devoted to proving Theorem 1. It is needed to show

(∗) if the initial condition ϕ is Lipschitz continuous, then u(x, t) := T−t ϕ(x) is the Lipschitz

solution of (CPH);

(∗∗) if ϕ is continuous, then u(x, t) := T−t ϕ(x) is the continuous solution of (CPH).

2.1 On Item (∗): the Lipschitz initial condition

For the reader’s convenience, we give a sketch of proof of Item (∗) as follows.

(1) Lemma 2.1 is proved in Appendix B. Some background knowledge is given in Section

A.1.

(2) Under Condition 1:

uk defined in (2.1) is continuous on M × [0, T ] for each k ∈ N+,

we prove Lemma 2.2(i) based on Lemma 2.1.

(3) Under Condition 2:

uk is locally Lipschitz on M × (0, T ] for each k ∈ N+, and it is the solution of (2.2) below,

we prove Lemma 2.2(ii) by Lemma 2.2(i).

(4) After a superlinear modification, we have Lemma 2.3 whose proof is provided in Appendix

C. The proof needs some ingredients given in Section A.2.

(5) Condition 2 in Lemma 2.2(ii) can be verified by Lemma 2.3 under the superlinear con-

dition. By Lemma 2.2(ii), Item (∗) holds under the superlinear condition.

(6) Under the coercive condition, we prove Lemma 2.4 based on Item (∗) under the superlinear

condition.

(7) Under the coercive condition, Condition 2 in Lemma 2.2(ii) can be verified by Lemma

2.4. By Lemma 2.2(ii), Item (∗) holds under the coercive condition.

The following is a detailed proof of Item (∗).

Lemma 2.1. Fix T > 0. Given ϕ ∈ C(M,R), v ∈ C(M × [0, T ],R) and t ∈ [0, T ], the

functional

Lt(γ) := ϕ(γ(0)) +

∫ t

0

L(γ(s), v(γ(s), s), γ̇(s))ds

reaches its infimum in the class of curves

Xt(x) = {γ ∈W 1,1([0, t],M) : γ(t) = x}.

Lemma 2.2. Fix T > 0 and ϕ ∈ C(M). For k ∈ N+ and t ∈ (0, T ], consider the following

iteration procedure

uk(x, t) := inf
γ(t)=x

{
ϕ(γ(0)) +

∫ t

0

L(γ(τ), uk−1(γ(τ), τ), γ̇(τ))dτ

}
, (2.1)

where u0(x, t) := ϕ(x).
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(i) If uk is continuous on M× [0, T ] for each k ∈ N+, then {uk(x, t)}k∈N converges uniformly

to u(x, t) := T−t ϕ(x) for all (x, t) ∈M × [0, T ], where the semigroup T−t : C(M)→ C(M)

is formulated as (T-).

(ii) Let ϕ ∈ Lip(M). If uk is locally Lipschitz on M × (0, T ] for each k ∈ N+, and it is the

solution of {
∂tu(x, t) +H(x, uk−1(x, t), ∂xu(x, t)) = 0,

u(x, 0) = ϕ(x),
(2.2)

then uk is Lipschitz on M×[0, T ], and its Lipschitz constant depends only on supk∈N ‖uk‖∞
and ‖∂xϕ‖∞. Moreover, the limit function u(x, t) := T−t ϕ is Lipschitz.

Proof. Item (i): By Lemma 2.1, the minimizers of each uk exist. First, let γ1 : [0, t]→M be a

minimizer of u1(x, t), then

u2(x, t)− u1(x, t) ≤
∫ t

0

[
L(γ1(s), u1(γ1(s), s), γ̇1(s))− L(γ1(s), ϕ(γ1(s)), γ̇1(s))

]
ds

≤ λ‖u1 − ϕ‖∞t.

Exchanging the positions of u2 and u1, we obtain

|u2(x, t)− u1(x, t)| ≤ λ‖u1 − ϕ‖∞t.

Let γ2 : [0, t]→M be a minimizer of u2(x, t), then

u3(x, t)− u2(x, t) ≤
∫ t

0

[
L(γ2(s), u2(γ2(s), s), γ̇2(s))− L(γ2(s), u1(γ2(s), s), γ̇2(s))

]
ds

≤ λ
∫ t

0

|u2(γ2(s), s)− u1(γ2(s), s)|ds ≤ λ
∫ t

0

λ‖u1 − ϕ‖∞sds

=
(λt)2

2
‖u1 − ϕ‖∞.

Exchanging the positions of u3 and u2, we obtain

|u2(x, t)− u1(x, t)| ≤ (λt)2

2
‖u1 − ϕ‖∞.

Continuing the above procedure, we obtain

‖uj+1 − uj‖∞ ≤
(λT )j

j!
‖u1 − ϕ‖∞,

for each j ∈ N. Thus,

‖uk − ϕ‖∞ ≤
k−1∑
j=0

‖uj+1 − uj‖∞ ≤
k−1∑
j=0

(λT )j

j!
‖u1 − ϕ‖∞ ≤ eλT ‖u1 − ϕ‖∞, ∀k ∈ N+.

For k1 > k2, we have

‖uk1 − uk2‖∞ ≤
(λT )k2

k2!
‖uk1−k2 − ϕ‖∞ ≤

(λT )k2

k2!
eλT ‖u1 − ϕ‖∞.
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Since (λT )k/k! converges to zero as k →∞, the right hand side can be arbitrarily small when

k2 is large enough. Therefore, the sequence {uk(x, t)}k∈N is a Cauchy sequence in the Banach

space (C(M × [0, T ]), ‖ · ‖∞). Then {uk(x, t)}k∈N converges uniformly to a continuous function

u(x, t). Define Aϕ : C(M × [0, T ])→ C(M × [0, T ]) via

Aϕ[u](x, t) := inf
γ(t)=x

{
ϕ(γ(0)) +

∫ t

0

L(γ(τ), u(γ(τ), τ), γ̇(τ))dτ

}
.

Then the limit function u(x, t) satisfies

‖Aϕ[u]− u‖∞ ≤ ‖Aϕ[u]− uk‖∞ + ‖uk − u‖∞ ≤ λT‖u− uk−1‖∞ + ‖uk − u‖∞.

Setting k → +∞ we conclude that u(x, t) is the unique fixed point of Aϕ. Namely, u(x, t) :=

T−t ϕ. The semigroup property of T−t can be verified by a similar argument as [20, Proposition

3.3].

Item (ii): By Item (i), {uk(x, t)}k∈N converges uniformly, then

sup
k∈N
‖uk(x, t)‖∞ < +∞.

Define

K1 := max{|H(x, u, p)| : x ∈M, |u| ≤ sup
k∈N
‖uk(x, t)‖∞, ‖p‖ ≤ ‖∂xϕ(x)‖∞},

and

K2 := min{H(x, u, p) : (x, p) ∈ T ∗M, |u| ≤ sup
k∈N
‖uk(x, t)‖∞}.

We will prove by induction

‖∂tuk(·, t)‖∞ ≤ max{K1e
λt, |K2|} (2.3)

for each k ∈ N+.

First, let us consider the case k = 1. Define

K0 := max{|H(x, u, p)| : x ∈M, |u| ≤ ‖ϕ(x)‖∞, ‖p‖ ≤ ‖∂xϕ(x)‖∞}.

For any h > 0, we define

w(x, t) :=

{
ϕ(x)−K0t, t ≤ h,
uk(x, t− h)−K0h, t > h.

(2.4)

First, the Lipschitz function (x, t) 7→ ϕ(x)−K0t satisfies

∂tu+H(x, ϕ(x), ∂xu) ≤ 0 (2.5)

almost everywhere. According to Proposition D.3, w(x, t) is a subsolution of (2.5) for t ≤ h.

Also, w(x, t) satisfies (2.5) for t > h. Thus, w(x, t) is a continuous subsolution of (2.5) with

w(x, 0) = ϕ(x). By the comparison result (see, e.g., [1, Theorem 5.1]), since (x, t) 7→ ϕ(x)−K0t

is Lipschitz in x, we have

w(x, h) = ϕ(x)−K0h ≤ u1(x, h).
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Note that u1(x, t) is Lipschitz on M × [h, T ], we have

u1(x, t)−K0h = w(x, t+ h) ≤ u1(x, t+ h), ∀t ≥ 0, h > 0.

Let h→ 0+. We have ∂tu1(x, t) ≥ −K0 ≥ −K1. We also have

∂tu1(x, t) = −H(x, ϕ(x), ∂xu1(x, t)) ≤ |K2|.

Thus, (2.3) holds for k = 1.

Now assume (2.3) holds for k − 1. For any h > 0, we define

w̄(x, t) :=

{
ϕ(x)−K1e

λht, t ≤ h,
uk(x, t− h)−K1he

λt, t > h.
(2.6)

First, the Lipschitz function (x, t) 7→ ϕ(x)−K1e
λht satisfies

∂tu+H(x, uk−1(x, t), ∂xu) ≤ 0

almost everywhere. According to Proposition D.3, w̄(x, t) is a subsolution of (2.2) for t ≤ h.

For t > h, we have

∂tw̄(x, t) +H(x, uk−1(x, t), ∂xw̄(x, t))

= ∂tuk(x, t− h)−K1hλe
λt +H(x, uk−1(x, t), ∂xuk(x, t− h))

≤ ∂tuk(x, t− h)− λ sup
s∈[t−h,t]

‖∂tuk−1(·, s)‖∞h+H(x, uk−1(x, t), ∂xuk(x, t− h))

≤ ∂tuk(x, t− h) +H(x, uk−1(x, t− h), ∂xuk(x, t− h)) = 0.

By the comparison result, since (x, t) 7→ ϕ(x)−K1e
λht is Lipschitz in x, we have

w̄(x, h) = ϕ(x)−K1he
λh ≤ uk(x, h).

Note that uk(x, t) is Lipschitz on M × [h, T ], we have

uk(x, t)−K1he
λ(t+h) = w̄(x, t+ h) ≤ uk(x, t+ h), ∀t ≥ 0, h > 0.

Let h→ 0+. We have ∂tuk(x, t) ≥ −K1e
λt. We also have

∂tuk(x, t) = −H(x, uk−1(x, t), ∂xuk(x, t)) ≤ |K2|.

We conclude that (2.3) holds for k. Plugging them into (2.2), one obtain

H(x, 0, ∂xuk(x, t)) ≤ max{K1e
λT , |K2|}+ λ‖uk−1(x, t)‖∞.

Thus ‖∂xuk(x, t)‖∞ is bounded on M × [0, T ] by (CER). It means uk(x, t) is Lipschitz on

M × [0, T ], and the Lipschitz constant only depends on supk∈N ‖uk(x, t)‖∞ and ‖∂xϕ(x)‖∞.

Moreover, {uk(x, t)}k∈N is equi-Lipschitz with respect to k. It follows that the limit function

u(x, t) := T−t ϕ is Lipschitz.

According to Lemma 2.2 (ii), the key point for the proof of Item (∗) is to show for each

k ∈ N, uk(x, t) defined by (2.1) is locally Lipschitz, and solves (2.2) in the viscosity sense. We

divide the remaining proof into two steps. In Step 1, we prove Item (∗) for the Hamiltonian

H(x, u, p) depending on p superlinearly. In Step 2, the superlinearity is relaxed to (CER).
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2.1.1 Step 1: Proof under the superlinear condition

In this part, we assume the Hamiltonian H : T ∗M × R → R satisfies (C)(CON)(LIP) and the

following.

(SL): For every (x, u) ∈ M × R, H(x, u, p) is superlinear in p, i.e. there exists a function

Θ : [0 +∞)→ R satisfying

lim
r→+∞

Θ(r)

r
= +∞, and H(x, u, p) ≥ Θ(‖p‖) for every (x, p, u) ∈ T ∗M × R.

The corresponding Lagrangian satisfies (CON)(LIP) and

(C): L(x, u, ẋ) is continuous;

(SL): For every (x, u) ∈ M × R, L(x, u, ẋ) is superlinear in ẋ, i.e., there exists a function

Θ : [0 +∞)→ R satisfying

lim
r→+∞

Θ(r)

r
= +∞, and L(x, u, ẋ) ≥ Θ(‖ẋ‖) for every (x, ẋ, u) ∈ TM × R.

At the beginning, we need some technical results.

Lemma 2.3. Given T > 0 and ϕ ∈ C(M), if v(x, t) is a Lipschitz function on M × [0, T ], then

(1) for any (x, t) ∈M × [0, T ], the minimizers of

u(x, t) := inf
γ(t)=x

{
ϕ(γ(0)) +

∫ t

0

L(γ(τ), v(γ(τ), τ), γ̇(τ))dτ

}
(2.7)

are Lipschitz. For any r > 0, if d(x, x′) ≤ r and |t− t′| ≤ r/2, where t ≥ r > 0, then the

Lipschitz constants of the minimizers of u(x′, t′) only depend on (x, t) and r.

(2) the value function u(x, t) defined in (2.7) is locally Lipschitz on M × (0, T ].

(3) u(x, t) is also the viscosity solution of{
∂tu(x, t) +H(x, v(x, t), ∂xu(x, t)) = 0,

u(x, 0) = ϕ(x).
(2.8)

on M × [0, T ].

Based on Lemma 2.3, we verify Item (∗) under the assumption (SL). In fact, let u0 := ϕ ∈
Lip(M) in the iteration procedure given by (2.1). By Lemma 2.2 (i), uk(x, t) converges uniformly

to u(x, t) := T−t ϕ(x) on M×[0, T ]. By Lemma 2.3 (2) and (3), u1(x, t) satisfies the assumptions

in Lemma 2.2 (ii), by which u1 is Lipschitz on M × [0, T ]. Repeating the argument, one can

obtain that uk is the Lipschitz solution of (2.2). By Lemma 2.2 (ii), the Lipschitz constant

of uk(x, t) is uniform with respect to k on M × [0, T ]. Since Hk(t, x, p) := H(x, uk(x, t), p)

converges uniformly on compact subsets of R × T ∗M , and uk(x, t) converges uniformly on

M × [0, T ], then the backward semigroup u(x, t) := T−t ϕ(x), as the limit of uk(x, t), is the

Lipschitz solution of (CPH) by the stability of viscosity solutions.



12 S. Zhang and J. Smith

2.1.2 Step 2: Relaxed to the coercive condition

In this part, we assume the Hamiltonian H : T ∗M×R→ R satisfies (C)(CON)(CER)(LIP). By

Lemma 2.1, one has the existence of the minimizers. In order to obtain the Lispchitz regularity

of uk in (2.1). We make a modification:

Hn(x, u, p) := H(x, u, p) + max{‖p‖2 − n2, 0}, n ∈ N.

It is clear that Hn is superlinear in p. The sequence Hn is decreasing, and converges uniformly

to H on compact subsets of T ∗M×R. The sequence of the corresponding Lagrangians {Ln}n∈N
is increasing, and converges to L pointwisely. Denote by un,k(x, t) the solution of (2.2) with H

replaced by Hn.

Lemma 2.4. Let H satisfy (C)(CON)(CER)(LIP). Let L be the Lagrangian associated to H.

Given ϕ ∈ Lip(M), for each k ∈ N, the function uk(x, t) defined by (2.1) is the Lipschitz

solution of (2.2).

Proof. Given n ∈ N, let

un,k(x, t) := inf
γ(t)=x

{
ϕ(γ(0)) +

∫ t

0

Ln(γ(τ), un,k−1(γ(τ), τ), γ̇(τ))dτ

}
, (2.9)

with un,0 := ϕ ∈ Lip(M). We first prove the following assertion for each k ∈ N by induction.

A[k]: Fix k ∈ N. The sequence {un,k(x, t)}n∈N is uniformly bounded and equi-Lipschitz with

respect to n, and converges uniformly to uk(x, t) on M × [0, T ]. Moreover, the limit

function uk(x, t) is Lipschitz.

We first prove that the assertion A[1] holds. By definition of Hn, for n ≥ ‖∂xϕ(x)‖∞,

Kn
0 := max{|Hn(x, u, p)| : x ∈M, |u| ≤ ‖ϕ(x)‖∞, ‖p‖ ≤ ‖∂xϕ(x)‖∞}

is always equal to

K0 = max{|H(x, u, p)| : x ∈M, |u| ≤ ‖ϕ(x)‖∞, ‖p‖ ≤ ‖∂xϕ(x)‖∞}.

Note that un,1(x, t) is the solution of

∂tu+Hn(x, ϕ(x), ∂xu) = 0. (2.10)

Similar to the proof of (2.3) with k = 1, we have

∂tun,1(x, t) ≥ −Kn
0 .

Combining (2.10) and the definition of Hn, we have

H(x, 0, ∂xun,1(x, t)) ≤ Hn(x, 0, ∂xun,1(x, t)) ≤ K0 + λ‖ϕ(x)‖∞, ∀n ≥ ‖∂xϕ(x)‖∞.

Therefore, {un,1(x, t)}n∈N is equi-Lipschitz. Note that

un,1(x, 0) = ϕ(x).
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It follows that {un,1(x, t)}n∈N is uniformly bounded, so it has a converging subsequence. Ac-

cording to Lemma A.7, un,1(x, t) converges to u1(x, t) pointwisely. It follows that

lim
n→+∞

un,1(x, t) = u1(x, t), uniformly on M × [0, T ],

which implies that u1(x, t) is Lipschitz.

Now assume that the assertion A[k-1] holds. Then uk−1(x, t) is Lipschitz, and lk−1 :=

supn∈N ‖un,k−1(x, t)‖∞ is finite. We will prove A[k] from A[k-1]. First, plugging the continuous

function uk−1(x, t) into (2.1) and by Lemma 2.1, the minimizers of uk(x, t) exist in the class of

absolutely continuous curves. By definition of Hn, for n ≥ ‖∂xϕ(x)‖∞,

Kn := max{|Hn(x, u, p)| : x ∈M, |u| ≤ lk−1, ‖p‖ ≤ ‖∂xϕ(x)‖∞}

is always equal to

K := max{|H(x, u, p)| : x ∈M, |u| ≤ lk−1, ‖p‖ ≤ ‖∂xϕ(x)‖∞}.

Note that un,k is the solution of

∂tu+Hn(x, un,k−1(x, t), ∂xu) = 0. (2.11)

Similar to the proof of (2.3), we have

∂tun,k(x, t) ≥ −Kn − λ‖∂tun,k−1‖∞T.

Combining (2.11) and the definition of Hn, we have

H(x, 0, ∂xun,k(x, t)) ≤ Hn(x, 0, ∂xun,k(x, t))

≤ K + λ‖∂tun,k−1‖∞T + λlk−1, ∀n ≥ ‖∂xϕ(x)‖∞.

Therefore, {un,k(x, t)}n∈N is equi-Lipschitz. Note that

un,k(x, 0) = ϕ(x).

It follows that {un,k(x, t)}n∈N is uniformly bounded, so it has a converging subsequence. We

have to show that all converging subsequences have the same limit function uk. In fact, accord-

ing to Lemma A.7, the value function

ūn,k(x, t) := inf
γ(t)=x

{
ϕ(γ(0)) +

∫ t

0

Ln(γ(τ), uk−1(γ(τ), τ), γ̇(τ))dτ

}
converges to uk(x, t) pointwisely. Taking a minimizer γ of un,k(x, t), we have

ūn,k(x, t)− un,k(x, t) ≤ϕ(γ(0)) +

∫ t

0

Ln(γ(τ), uk−1(γ(τ), τ), γ̇(τ))dτ

− ϕ(γ(0)) +

∫ t

0

Ln(γ(τ), un,k−1(γ(τ), τ), γ̇(τ))dτ

≤λ‖uk−1(x, t)− un,k−1(x, t)‖∞T.

Exchanging the role of ūn,k(x, t) and un,k(x, t), we have ‖ūn,k(x, t) − un,k(x, t)‖∞ → 0 as

n→∞. It follows that

lim
n→+∞

un,k(x, t) = uk(x, t), uniformly on M × [0, T ],
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which implies that uk(x, t) is Lipschitz. Note that the Lipschitz constant may depend on k.

Thus, the assertion A[k] holds.

Since Hn converges uniformly to H on compact subsets of T ∗M×R, and un,k(x, t) converges

uniformly to uk(x, t) on M × [0, T ], by the stability of the viscosity solutions, we conclude that

uk(x, t) is the Lipschitz solution of (2.2).

By Lemma 2.2 (i), uk(x, t) converges uniformly to u(x, t) onM×[0, T ]. Moreover, supk∈N ‖uk(x, t)‖∞
is finite. Since ϕ ∈ Lip(M), then ‖∂xϕ‖∞ is also finite. By Lemma 2.2 (ii), {uk(x, t)}k∈N is equi-

Lipschitz. Therefore the limit function u(x, t) := T−t ϕ(x) is the Lipschitz solution of (CPH).

Theorem 1 has been proved when ϕ is Lipschitz.

2.2 On Item (∗∗): the continuous initial conditions

At the beginning, we need to show T−t ϕ is well-defined for each ϕ ∈ C(M). By Lemma 2.2, it

suffices to prove that given T > 0 and ϕ ∈ C(M), uk defined in (2.1) is continuous on M×[0, T ].

In fact, for any ϕ ∈ C(M), there exists a sequence of Lipschitz functions {ϕm}m∈N con-

verging uniformly to ϕ. We have already proved in Lemma 2.4 that for the initial function ϕm,

the solution of (2.2), denoted by umk (x, t), is Lipschitz. We then proceed by induction in the

following. By definition, um0 converges uniformly to u0. Assume umk−1 converges uniformly to

uk−1, then uk−1 is continuous. By Lemma 2.1(i), uk(x, t) admits a minimizer γ. By definition,

we have

umk (x, t)− uk(x, t) ≤ ϕm(γ(0))− ϕ(γ(0)) + λ‖umk−1(x, t)− uk−1(x, t)‖∞T.

Exchanging the roles of umk (x, t) and uk(x, t), we obtain ‖umk −uk‖∞ → 0 as m→∞. Therefore,

uk defined in (2.1) is continuous on M × [0, T ].

By Lemma 2.2 (i), uk(x, t) converges uniformly to u(x, t) := T−t ϕ(x). It follows that u(x, t)

is continuous. It remains to verify that u(x, t) is the solution of (CPH).

We have proved in Item (∗) that for ϕ ∈ Lip(M), T−t ϕ(x) is the Lipschitz solution of (CPH).

We assert for any ϕ and ψ ∈ C(M),

‖T−t ϕ− T−t ψ‖∞ ≤ eλt‖ϕ− ψ‖∞. (2.12)

If the assertion is true, then for t ∈ [0, T ], T−t ϕm converges uniformly to T−t ϕ as m → ∞.

According to the stability of viscosity solutions, we conclude that T−t ϕ is the solution of (CPH)

under the initial condition u(x, 0) = ϕ(x). The uniqueness of the solution of (CPH) is guar-

anteed by the comparison theorem (see [18, Theorem 2.1]). The assertion (2.12) above will be

verified in Proposition 3.1 below.

3 An existence result for the solutions of (EH)

In order to prove Theorem 2, we collect two basic properties of the backward and forward

Lax-Oleinik semigroups in the following.

Proposition 3.1.

(1) For any ϕ and ψ ∈ C(M), if ϕ(x) < ψ(x) for all x ∈ M , then T−t ϕ(x) < T−t ψ(x) and

T+
t ϕ(x) < T+

t ψ(x) for all (x, t) ∈M × (0,+∞).
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(2) For any ϕ and ψ ∈ C(M), then ‖T−t ϕ− T−t ψ‖∞ ≤ eλt‖ϕ− ψ‖∞ and ‖T+
t ϕ− T+

t ψ‖∞ ≤
eλt‖ϕ− ψ‖∞ for all t > 0.

Proof. We first prove Item (1). Assume that there exists (x, t) ∈ M × [0,+∞) such that

T−t ϕ(x) ≥ T−t ψ(x). Let γ : [0, t]→M be a minimizer of T−t ψ(x) with γ(t) = x. Define

F (s) = T−s ψ(γ(s))− T−s ϕ(γ(s)), s ∈ [0, t].

Then F is a continuous function defined on [0, t], and F (0) > 0. By assumption we have

F (t) ≤ 0. Then there is s0 ∈ [0, t) such that F (s0) = 0 and F (s) > 0 for all s ∈ [0, s0). Since γ

is a minimizer of T−t ϕ2(x), we have

T−s0ψ(γ(s0)) = T−s ψ(γ(s)) +

∫ s0

s

L(γ(τ), T−τ ψ(γ(τ)), γ̇(τ))dτ,

and

T−s0ϕ(γ(s0)) ≤ T−s ϕ(γ(s)) +

∫ s0

s

L(γ(τ), T−τ ϕ(γ(τ)), γ̇(τ))dτ,

which implies F (s0) ≥ F (s)− λ
∫ s0
s
F (τ)dτ . Here F (s0) = 0, thus

F (s) ≤ λ
∫ s0

s

F (τ)dτ.

By the Gronwall inequality, we conclude F (s) ≡ 0 for all s ∈ [0, s0), which contradicts F (0) > 0.

Next, we prove Item (2). For a given x ∈M and t > 0, if T−t ϕ(x) = T−t ψ(x), then the proof

is completed. Without loss of generality, we consider T−t ϕ(x) > T−t ψ(x). Let γ : [0, t]→M be

a minimizer of T−t ψ(x), define

F (s) := T−s ϕ(γ(s))− T−s ψ(γ(s)), ∀s ∈ [0, t].

By assumption we have F (t) > 0. If there is σ ∈ [0, t) such that F (σ) = 0 and F (s) > 0 for all

s ∈ (σ, t], by definition we have

T−s ϕ(γ(s)) ≤ T−t ϕ(γ(σ)) +

∫ s

σ

L(γ(τ), T−τ ϕ(γ(τ)), γ̇(τ))dτ,

and

T−s ψ(γ(s)) = T−t ψ(γ(σ)) +

∫ s

σ

L(γ(τ), T−τ ψ(γ(τ)), γ̇(τ))dτ,

which implies

F (s) ≤ F (σ) + λ

∫ s

σ

F (τ)dτ,

where F (σ) = 0. By the Gronwall inequality we conclude F (s) ≡ 0 for all s ∈ [σ, t], which

contradicts F (t) > 0.

Therefore, for all σ ∈ [0, t], we have F (σ) > 0. Here 0 < F (0) ≤ ‖ϕ − ψ‖∞. By definition

we have

T−s ϕ(γ(σ)) ≤ T−t ϕ(γ(0)) +

∫ σ

0

L(γ(τ), T−τ ϕ(γ(τ)), γ̇(τ))dτ,

and

T−s ψ(γ(σ)) = T−t ψ(γ(0)) +

∫ σ

0

L(γ(τ), T−τ ψ(γ(τ)), γ̇(τ))dτ,
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which implies

F (σ) ≤ F (0) + λ

∫ σ

0

F (τ)dτ.

By the Gronwall inequality we get F (σ) ≤ ‖ϕ − ψ‖∞eλσ, which implies T−t ϕ(x) − T−t ψ(x) ≤
‖ϕ−ψ‖∞eλt by taking σ = t. Exchanging the role of ϕ and ψ, we finally obtain that ‖T−t ϕ(x)−
T−t ψ(x)‖∞ ≤ ‖ϕ− ψ‖∞eλt.

By definition, one can show the corresponding properties of T+.

Generally speaking, the local boundedness of L(x, u, ẋ) does not hold if H(x, u, p) satisfies

the assumption (CER) rather than superlinearity. Fortunately, similar to [19, Lemma 2.3], one

can prove the local boundedness of L(x, u, ẋ) restricting on certain regions.

Lemma 3.2. Let H(x, 0, p) satisfy (C)(CON)(CER), there exist constants δ > 0 and C̄ > 0

such that the Lagrangian L(x, 0, ẋ) associated to H(x, 0, p) satisfies

L(x, 0, ξ) ≤ C̄, ∀(x, ξ) ∈M × B̄(0, δ).

In the following part of this paper, we define

µ :=
diam(M)

δ
. (3.1)

Lemma 3.3. Let ϕ ∈ C(M).

(1) Given any x0 ∈ M , if T−t ϕ(x0) does not have an upper bound as t → +∞, then for any

c ∈ R, there exists tc > 0 such that T−tcϕ(x) > ϕ(x) + c for all x ∈M .

(2) Given any x0 ∈ M , if T−t ϕ(x0) does not have a lower bound as t → +∞, then for any

c ∈ R, there exists tc > 0 such that T−tcϕ(x) < ϕ(x) + c for all x ∈M .

Proof. We only prove Item (1). Item (2) is similar to be verified. Assume that there exists

c0 ∈ R such that for any t > 0, we have a point xt ∈ M satisfying T−t ϕ(xt) ≤ ϕ(xt) + c0. Let

α : [0, µ] → M be a geodesic connecting xt and x with constant speed, where the constant µ

was defined in (3.1), then ‖α̇‖ ≤ δ. If T−t+µϕ(x) > ϕ(xt) + c0, since T−t ϕ(xt) ≤ ϕ(xt) + c0,

there exists σ ∈ [0, µ) such that T−t+σϕ(α(σ)) = ϕ(xt) + c0 and T−t+sϕ(α(s)) > ϕ(xt) + c0 for all

s ∈ (σ, µ]. By definition we have

T−t+sϕ(α(s)) ≤ T−t+σϕ(α(σ)) +

∫ s

σ

L(α(τ), T−t+τϕ(α(τ)), α̇(τ))dτ

= ϕ(xt) + c0 +

∫ s

σ

L(α(τ), T−t+τϕ(α(τ)), α̇(τ))dτ,

which implies

T−t+sϕ(α(s))− (ϕ(xt) + c0) ≤
∫ s

σ

L(α(τ), T−t+τϕ(α(τ)), α̇(τ))dτ

≤
∫ s

σ

L(α(τ), ϕ(xt) + c0, α̇(τ))dτ + λ

∫ s

σ

(T−t+τϕ(α(τ))− (ϕ(xt) + c0))dτ

≤ L0µ+ λ

∫ s

σ

(T−t+τϕ(α(τ))− (ϕ(xt) + c0))dτ,
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where

L0 := C̄ + λ‖ϕ+ c0‖∞,

and C̄ is given in Lemma 3.2. By the Gronwall inequality, we have

T−t+sϕ(α(s))− (ϕ(xt) + c0) ≤ L0µe
λ(s−σ) ≤ L0µe

λµ, ∀s ∈ (σ, µ].

Take s = µ. We have T−t+µϕ(x) ≤ ϕ(xt) + c0 + L0µe
λµ. It means that T−t+µϕ(x) has an upper

bound independent of t, which contradicts the assumption.

Lemma 3.4. If there exist two continuous functions ϕ1 and ϕ2 on M such that

T−t ϕ1 ≥ C1, T−t ϕ2 ≤ C2,

then there is a constant function ϕ̄ such that |T−t ϕ̄| ≤ C3 for all (x, t) ∈ M × [0,+∞), where

Ci, i = 1, 2, 3, are constants independent of x and t.

Proof. Define A1 := ‖ϕ1‖∞ and A2 := −‖ϕ2‖∞, then A2 ≤ A1 and

T−t A1(x) ≥ T−t ϕ1(x), T−t A2(x) ≤ T−t ϕ2(x) for all x ∈M.

If T−t A1(x) has an upper bound independent of t, then ϕ̄ ≡ A1 is enough. If T−t A1(x) does not

have an upper bound independent of t, we define

A∗ := inf{A : ∃tA > 0 such that T−tAA(x) ≥ A, ∀x ∈M}.

By using Lemma 3.3 (1) with c = 0, we have A∗ ≤ A1 < +∞. The remaining discussion is

divided into two cases.

Case (1): A∗ > −∞. In this case, we aim to prove that ϕ̄ ≡ A∗ is enough.

We first show that T−t A
∗(x) has an upper bound independent of t. Assume T−t A

∗(x)

does not have an upper bound. By Lemma 3.3 (1), for c = 1, there is t1 > 0 such that

T−t1A
∗(x) > A∗ + 1 for all x ∈M . By Proposition 3.1 (2), for any ε > 0, we have

T−t1 (A∗ − ε)(x) ≥ T−t1A
∗(x)− eλt1ε > A∗ + 1− eλt1ε.

For every 0 < ε < (eλt1 − 1)−1, we have T−t1 (A∗ − ε)(x) > A∗ − ε. It means that we have found

a smaller constant A∗ − ε such that if tA∗−ε := t1, then

T−tA∗−ε
(A∗ − ε)(x) > A∗ − ε,

which contradicts the definition of A∗.

We then prove that T−t A
∗ has a lower bound independent of t. Assume T−t A

∗(x) does

not have a lower bound. By using Lemma 3.3 (2) with c = −1, there is t1 > 0 such that

T−t1A
∗(x) < A∗ − 1 for all x ∈ M . Since T−t A

∗(x) has an upper bound independent of t, then

A∗ < A1. By Proposition 3.1 (2) and A∗ < A1, there is a constant δ0 > 0 such that A∗+δ < A1

and

T−t1 (A∗ + δ)(x) < A∗ − 1

2
+ δ < A∗ + δ, (3.2)

for all δ ∈ [0, δ0). By the definition of A∗, there is Ā ∈ [A∗, A∗+ δ0) and t2 := tĀ > 0 such that

T−t2 Ā(x) ≥ Ā. (3.3)
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By (3.2), we have

T−t1 Ā(x) < Ā− 1

2
< Ā. (3.4)

Define B∗ := Ā− 1
2 . According to the continuity of T−t ϕ(x) at t = 0, there exists ε0 > 0 such

that for 0 ≤ σ < ε0, we have

T−σ B
∗(x) ≤ Ā− 1

4
. (3.5)

For t1 and t2 > 0, there exist n1 and n2 ∈ N, and ε ∈ [0, ε0) such that n1t1 + ε = n2t2. By

Proposition 3.1 (1) and (3.2), we have

T−n1t1Ā(x) ≤ T−t1 Ā(x) < B∗. (3.6)

Take σ = ε in (3.5). By Proposition 3.1 (1) and (3.6), we get

T−ε ◦ T−n1t1Ā(x) ≤ T−ε B∗(x) ≤ Ā− 1

4
. (3.7)

By (3.3), one has T−n2t2Ā(x) ≥ Ā. Thus

Ā− 1

4
≥ T−ε ◦ T−n1t1Ā(x) = T−n2t2Ā(x) ≥ Ā, (3.8)

which is a contradiction.

Case (2): A∗ = −∞. In this case, we aim to prove that for any A < A2, the function T−t A(x)

is uniformly bounded. Namely, ϕ̄ ≡ A is enough. Since T−t A(x) ≤ T−t A2(x), then T−t A(x) has

an upper bound. The proof of the existence of the lower bound of T−t A(x) is similar to Case

(1). In fact, we only need to replace A∗, A1 by A and A2 respectively.

Remark 3.5. Let ϕ ∈ C(M). According to [18, Theorem 6.1], if T−t ϕ(x) has a bound inde-

pendent of t, then the lower half limit

ϕ̌(x) := lim
r→0+

inf{T−t ϕ(y) : d(x, y) < r, t > 1/r}

is a Lipschitz solution of (EH). According to Proposition D.4, the function ϕ̌ is a backward

weak KAM solution of (EH). Similarly, if T+
t ϕ(x) has a bound independent of t, define

ϕ̂(x) : = lim
r→0+

sup{T+
t ϕ(y) : d(x, y) < r, t > 1/r}

= lim
r→0+

sup{−T̄−t (−ϕ)(y) : d(x, y) < r, t > 1/r}

= − lim
r→0+

inf{T̄−t (−ϕ)(y) : d(x, y) < r, t > 1/r}.

Then −ϕ̂ is a Lipschitz solution of H(x,−u,−∂xu) = 0. Equivalently, ϕ̂ is a forward weak

KAM solution of (EH).

Proof of Theorem 2. By assumption, there is ϕ ∈ C(M) and t1 > 0 such that T−t1ϕ ≥ ϕ. For

any t > 0, one can find n ∈ N and r ∈ [0, t1) such that t = nt1 + r. By Proposition 3.1 (1), we

have T−t ϕ ≥ T−r ϕ. Namely, T−t ϕ has a lower bound independent of t. On the other hand, there

is ψ ∈ C(M) and t2 > 0 such that T−t2ψ ≤ ψ. It is similar to obtain that T−t ψ has an upper

bound independent of t. By Lemma 3.4, there exists a constant function ϕ̄ such that T−t ϕ̄ is

uniformly bounded. By Remark 3.5, (EH) admits Lipschitz viscosity solutions.
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4 The Aubry set

Let u− ∈ S−. At the beginning, we prove that the limit function x 7→ limt→+∞ T+
t u−(x) is

well defined. Corollaries 4.3 and 4.7 guarantee the boundedness of T+
t u−. Moreover, Item (1)

of Theorem 3 is verified by Proposition 4.8, and Item (2) is shown by Proposition 4.9.

Proposition 4.1. Let ϕ ∈ C(M) and u− ∈ S−. If ϕ satisfies the following condition:

(�) ϕ ≤ u− and there exists a point x0 such that ϕ(x0) = u−(x0).

then T+
t ϕ(x) has a bound independent of t and ϕ.

We divide the proof into three parts, that is, Lemmas 4.2, 4.5 and 4.6.

Lemma 4.2. Suppose ϕ satisfies the condition (�), then T+
t ϕ(x) ≤ u−(x) for all t > 0.

Proof. Assume there exists (x, t) ∈M× (0,+∞) such that T+
t ϕ(x) > u−(x). Let γ : [0, t]→M

be a minimizer of T+
t ϕ(x) with γ(0) = x. Define

F (s) = T+
t−sϕ(γ(s))− u−(γ(s)), s ∈ [0, t].

Then F (s) is continuous and F (t) = ϕ(γ(t))−u−(γ(t)) ≤ 0. By assumption we have F (0) > 0.

Then there is τ0 ∈ (0, t] such that F (τ0) = 0 and F (τ) > 0 for all s ∈ [0, τ0). For each τ ∈ [0, τ0],

we have

T+
t−τϕ(γ(τ)) = T+

t−τ0ϕ(γ(τ0))−
∫ τ0

τ

L(γ(s), T+
t−sϕ(γ(s)), γ̇(s))ds.

Since u− = T−t u− for all t > 0, we have

u−(γ(τ0)) ≤ u−(γ(τ)) +

∫ τ0

τ

L(γ(s), u−(γ(s)), γ̇(s))ds.

Thus F (τ) ≤ F (τ0) + λ
∫ τ0
τ
F (s)ds, where F (τ0) = 0. Define F (s) = G(τ0 − s). We get

G(τ0 − τ) ≤ λ
∫ τ0−τ

0

G(σ)dσ.

By the Gronwall inequality, we conclude F (τ) = G(τ0 − τ) ≡ 0 for all τ ∈ [0, τ0], which

contradicts F (0) > 0.

Corollary 4.3. Let u− ∈ S−. Then T+
t u− ≤ u− for each t > 0.

Combining Corollary 4.3 with Proposition 3.1 (1), one can obtain that T+
t u− = T+

s ◦
T+
t−su− ≤ T+

s u− for all t > s, then we have

Corollary 4.4. T+
t u− is decreasing in t.

Lemma 4.5. Suppose ϕ satisfies the condition (�). Let γ− : (−∞, 0] → M be a (u−, L, 0)-

calibrated curve with γ−(0) = x0, then T+
t ϕ(γ−(−t)) = u−(γ−(−t)) for each t > 0.
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Proof. For each t > 0, we define γt(s) := γ−(s − t) for s ∈ [0, t]. By Lemma 4.2, for each

s ∈ [0, t], we have u−(γt(s)) ≥ T+
t−sϕ(γt(s)). Define

F (s) = u−(γt(s))− T+
t−sϕ(γt(s)),

then F (s) ≥ 0 and F (t) = 0. If F (0) > 0, then there is s0 ∈ (0, t] such that F (s0) = 0 and

F (s) > 0 for all s ∈ [0, s0). By definition, for s1 ∈ [0, s0), we have

u−(γt(s0))− u−(γt(s1)) =

∫ s0

s1

L(γt(s), u−(γt(s)), γ̇t(s))ds,

and

T+
t−s1ϕ(γt(s1)) ≥ T+

t−s0ϕ(γt(s0))−
∫ s0

s1

L(γt(s), T
+
t−sϕ(γt(s)), γ̇t(s))ds,

which implies

F (s1) ≤ F (s0) + λ

∫ s0

s1

F (s)ds.

By the Gronwall inequality, we conclude F (s) ≡ 0 for all s ∈ [0, s0], which contracts F (0) > 0.

Therefore F (0) = 0. Namely, T+
t ϕ(γt(0)) = u−(γt(0)). Recall γt(s) := γ−(s − t). We have

T+
t ϕ(γ−(−t)) = u−(γ−(−t)).

Lemma 4.6. Suppose ϕ satisfies the condition (�), then T+
t ϕ(x) has a lower bound independent

of t and ϕ.

Proof. Let γ− : (−∞, 0] → M be a (u−, L, 0)-calibrated curve with γ−(0) = x0. Let t > µ

and α : [0, µ] → M be a geodesic connecting x and γ−(−t + µ) with constant speed, then

‖α̇‖ ≤ δ. If T+
t ϕ(x) ≥ u−(γ−(−t + µ)), then the proof is completed. It remains to consider

T+
t ϕ(x) < u−(γ−(−t+ µ)). Since

T+
t−µϕ(γ−(−t+ µ)) = u−(γ−(−t+ µ)),

then there is σ ∈ (0, µ] such that

T+
t−σϕ(α(σ)) = u−(γ−(−t+ µ)), T+

t−sϕ(α(s)) < u−(γ−(−t+ µ)) for all s ∈ [0, σ).

By definition we have

T+
t−sϕ(α(s)) ≥ T+

t−σϕ(α(σ))−
∫ σ

s

L(α(τ), T+
t−τϕ(α(τ)), α̇(τ))dτ

= u−(γ−(−t+ µ))−
∫ σ

s

L(α(τ), T+
t−τϕ(α(τ)), α̇(τ))dτ,

which implies

u−(γ−(−t+ µ))− T+
t−sϕ(α(s)) ≤

∫ σ

s

L(α(τ), T+
t−τϕ(α(τ)), α̇(τ))dτ

≤
∫ σ

s

L(α(τ), u−(γ−(−t+ µ)), α̇(τ))dτ + λ

∫ σ

s

(u−(γ−(−t+ µ))− T+
t−τϕ(α(τ)))dτ

≤ L0µ+ λ

∫ σ

s

(u−(γ−(−t+ µ))− T+
t−τϕ(α(τ)))dτ,
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where

L0 := C̄ + λ‖u−‖∞,

and C̄ is given by Lemma 3.2. Let G(σ − s) = u−(γ−(−t+ µ))− T+
t−sϕ(α(s)), then

G(σ − s) ≤ L0µ+ λ

∫ σ−s

0

G(τ)dτ.

By the Gronwall inequality, we have

u−(γ−(−t+ µ))− T+
t−sϕ(α(s)) = G(σ − s) ≤ L0µe

λ(σ−s) ≤ L0µe
λµ, ∀s ∈ [0, σ).

Thus T+
t ϕ(x) ≥ u−(γ−(−t+µ))−L0µe

λµ. We finally get a lower bound of T+
t ϕ(x) independent

of t and ϕ.

Corollary 4.7. T+
t u− has a lower bound independent of t.

Proposition 4.8. T+
t u− converges to a forward weak KAM solution u+ of (EH) uniformly as

t→ +∞.

Proof. We first recall that T+
t ϕ := −T̄−t (−ϕ), where T̄−t denotes the backward Lax-Oleinik

semigroup associated to L(x,−u,−ẋ). Since T+
t u− is decreasing in t, the function u(x, t) :=

T̄−t (−u−) is increasing in t. Thus, ∂tu(x, t) ≥ 0 holds in the viscosity sense. Since u(x, t)

is the viscosity solution of ∂tu + H(x,−u,−∂xu) = 0, we have H(x,−u,−∂xu) ≤ 0. Since

T+
t u− has a bound independent of t, u(x, t) has a bound independent of t. We conclude that

‖∂xT+
t u−‖∞ = ‖∂xu(x, t)‖∞ has a bound independent of t by (CER). Corollaries 4.4 and 4.7

imply that the pointwise limit u+(x) = limt→+∞ T+
t u−(x) exists. Since ‖∂xT+

t u−‖∞ has a

bound independent of t, the limit function u+ is continuous. By the Dini theorem, the family

T+
t u− converges uniformly to u+. It remains to prove that u+ is a fixed point of T+

t . For each

t > 0, by Proposition 3.1 (2), we have

‖T+
t+su− − T+

t u+‖∞ ≤ eλt‖T+
s u− − u+‖∞.

Letting s→ +∞, we get T+
t u+ = u+.

Proposition 4.9. The set Iu− is nonempty. More precisely, let γ− : (−∞, 0] → M be a

(u−, L, 0)-calibrated curve. Define

α(γ−) := {x ∈M : there exists a sequence tn → −∞ such that d(γ−(tn), x)→ 0}.

Then α(γ−) is nonempty, and it is contained in Iu− .

Proof. Let γ− : (−∞, 0] → M be a (u−, L, 0)-calibrated curve. By Lemma 4.5, for each t > 0

we have

T+
t u−(γ−(−t)) = u−(γ−(−t)).

Since M is compact, the set α(γ−) is nonempty. Let x∗ ∈ α(γ−) and tn → +∞ such that

d(γ−(−tn), x∗)→ 0. The following inequality holds

|T+
tnu−(γ−(−tn))− u+(x∗)| ≤|T+

tnu−(γ−(−tn))− u+(γ−(−tn))|
+ |u+(γ−(−tn))− u+(x∗)|.
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The function u+ is Lipschitz (see Proposition D.2). Thus, as tn → +∞,

|u+(γ−(−tn))− u+(x∗)| → 0.

Since T+
t u− converges to u+ uniformly, then

|T+
tnu−(γ−(−tn))− u+(γ−(−tn))| → 0.

Therefore, the limit of T+
tnu−(γ−(−tn)) is u+(x∗). On the other hand, we have

T+
tnu−(γ−(−tn)) = u−(γ−(−tn)),

which tends to u−(x∗) by the continuity of u−. We conclude that u+(x∗) = u−(x∗). It means

α(γ−) ⊆ Iu− .

5 A comparison result for the solutions of (EH)

According to [8, Theorem 3.2], the viscosity solution of

H(x,−u(x),−∂xu(x)) = 0

is unique. By Proposition D.4, the forward weak KAM solution u+ of (EH) is also unique.

Define u− = limt→+∞ T−t u+, then the conjugate pair (u−, u+) is unique. According to Propo-

sition 4.8, T+
t v− converges to the unique forward weak KAM solution u+ uniformly as t→ +∞

and u+ ≤ v− for all v− ∈ S−.

Proof of Theorem 4. We first prove the result (1). By Proposition 4.9, the set Iv− is nonempty

for each v− ∈ S−. For x ∈ Iv2 , we have

u+(x) ≤ v1(x) ≤ v2(x) = u+(x),

then v1(x) = v2(x) = u+(x), that is, x ∈ Iv1 .

We then prove the result (2). For each x ∈ M , let γ2 : (−∞, 0] → M be a (v2, L, 0)-

calibrated curve with γ2(0) = x. By Proposition 4.9, there is a t0 > 0 large enough, such that

γ2(−t0) ∈ O, where O denotes a neighborhood of Iv2 . Define

F (s) = v1(γ2(s))− v2(γ2(s)), s ∈ [−t0, 0].

If v1(x) > v2(x), then F (0) = v1(x)− v2(x) > 0 and F (−t0) = v1(γ2(−t0))− v2(γ2(−t0)) ≤ 0.

Then there is σ ∈ [−t0, 0) such that F (σ) = 0 and F (s) > 0 for all s ∈ (σ, 0]. By definition we

have

v1(γ2(s))− v1(γ2(σ)) ≤
∫ s

σ

L(γ2(τ), v1(γ2(τ)), γ̇2(τ))dτ,

and

v2(γ2(s))− v2(γ2(σ)) =

∫ s

σ

L(γ2(τ), v2(γ2(τ)), γ̇2(τ))dτ,

which implies

F (s) ≤ F (σ) + λ

∫ s

σ

F (τ)dτ.

By the Gronwall inequality we conclude F (s) ≡ 0 for all s ∈ [σ, 0], which contradicts F (0) > 0.

We conclude v1 ≤ v2 on M .

The result (3) follows directly from (2). The proof is now complete.
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6 On the example (E1)

Let u+ be the unique forward weak KAM solution of (E1). We have already known that

u+ ≤ v− for each viscosity solution v− of (E1). It is sufficient to show u+(x) < u2(x) for all

x ∈ (−1, 1]\{0}. By the symmetry of u2, we only need to consider x ∈ (0, 1].

By [5, Theorem 5.3.6] and Proposition D.4, each u+ is a semiconvex function with linear

modulus. Note that u+(x) ≤ u2(x). Moreover, u+ can not be equal to u2 at x = 1. In fact,

if u2 = u+ at x = 1, combining with the semiconcavity of u2, then u2 is differentiable at this

point. Let us recall

u2(x) =
λ−
√
λ2 − 4

2
V (x),

and V is not differentiable at x = 1. This is a contradiction.

We then assume that there exists x0 ∈ (0, 1) such that u+(x0) = u2(x0). Since u2(x) is

differentiable for each x ∈ [0, 1), then u2 satisfies

−λu(x) +
1

2
|u′(x)|2 + V (x) = 0

in the classical sense for x ∈ [0, 1). Note that |u′2(x)| > 0 for x ∈ (0, 1), we have λu2(x) > V (x)

for all x ∈ (0, 1). For z > V (x), we set

f(x, z) := λ
√

2(z − V (x)),

then the function (x, z) 7→ f(x, z) is of class C1 on

{(x, z) ∈ R2 | x ∈ (0, 1), z > V (x)}.

Given ε ∈ (0, x0), denote

Ωε :=

{
(x, z) ∈ R2 | x ∈ [ε, 1), z ∈

[
1

2
λu2(x) +

1

2
V (x),

3

2
λu2(x)− 1

2
V (x)

]}
.

It follows that ∣∣∣∣∂f∂z
∣∣∣∣ =

λ√
2(z − V (x))

≤ λ√
λu2(ε)− V (ε)

< +∞.

By the classical theory of ordinary differential equations, for x0 ∈ (0, 1), λu2(x) is the unique

solution of
dz

dx
= f(x, z), z(x0) = λu2(x0), on Ωε. (6.1)

We assert that u+ is differentiable on (0, 1). If the assertion is true, then u+ satisfies (E1) in

the classical sense. Since u+ ≤ u2 and u+(x0) = u2(x0), λu+ is the unique solution of (6.1) on

Ωε. That is, u+ = u2 on (ε, 1). Moreover, u+ = u2 on S by continuity and the arbitrariness of ε.

This contradicts the semiconvexity of u+. Therefore, we have u+(x) < u2(x) for all x ∈ (0, 1].

It remains to show that u+ is differentiable on (0, 1). Assume there exists y0 ∈ (0, 1) such

that u+ is not differentiable at y0. By [27, Lemma 2.2], [5, Theorem 3.3.6], and Proposition

D.4, we have

D∗u+(x) = {p ∈ D−u+(x) | H(x, u+(x), p) = 0}, D−u+(x) = coD∗u+(x),
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where D∗ stands for the set of all reachable gradients and “co” denotes the convex hull. It

follows from (E1) that

D∗u+(y0) = {±l},

where l is a positive constant. By the semiconvexity of u+, there exists y1 ∈ (0, y0) such that

u+(y1) > u+(y0). Moreover, there is z0 ∈ (0, y0) achieving a local maximum of u+. By using

the semiconvexity of u+ again, it is differentiable at z0, then u′+(z0) = 0. By (E1), we have

−λu+(z0) + V (z0) = 0.

Since u′+(x) exists for almost all x, there is z1 ∈ (z0, y0) such that u′+(z1) exists. By the

Newton-Leibniz formula, one can require |u′+(z1)| > 0 and u+(z0) ≥ u+(z1) ≥ 0. By definition,

we have V (z1) > V (z0). Therefore

−λu+(z1) +
1

2
|u′+(z1)|2 + V (z1) > −λu+(z0) + V (z0) = 0,

which contradicts that u+ satisfies (E1) at z1 in the classical sense.
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A One dimensional variational problems

The following results are useful in the proof of the existence and regularity of the minimizers

in (T-), which all come from [4] and [22]. The results in [4, 22] were stated for the case in

the Euclidean space Rn. It is not difficult to generalize them for the case in the Riemannian

manifold M .

A.1 Γ-convergence

Lemma A.1. Let J be a bounded interval. Assume that F (t, x, ẋ) is lower semicontinuous,

convex in ẋ, and has a lower bound. Then the integral functional

F(γ) =

∫
J

F (s, γ(s), γ̇(s))ds

is sequentially weakly lower semicontinuous in W 1,1(J,M).

Proposition A.2. Let M be a compact connected smooth manifold. Denote by I = (a, b) ⊂ R
a bounded interval, and let F (t, x, ẋ) be a Lagrangian defined on I × TM . Assume F satisfies

(i) F (t, x, ẋ) is measurable in t for all (x, ẋ), and continuous in (x, ẋ) for almost every t;

(ii) F (t, x, ẋ) is convex in ẋ;

(iii) F (t, x, ẋ) is superlinear in ẋ.

Then for any given boundary condition x0 and x1 ∈M , there exists a minimizer of
∫
I
F (t, x, ẋ)dt

in {x(t) ∈W 1,1([a, b],M) : x(a) = x0, x(b) = x1}.



Representation formula of viscosity solution 25

Definition A.3. Let X be a topological space. Given a sequence Fn : X → [−∞,+∞], then

we define

(Γ− lim inf
n→+∞

Fn)(x) = sup
U∈N (x)

lim inf
n→+∞

inf
y∈U

Fn(y),

(Γ− lim sup
n→+∞

Fn)(x) = sup
U∈N (x)

lim sup
n→+∞

inf
y∈U

Fn(y).

Here the neighbourhoods N (x) can be replaced by the topological basis. When the superior limit

equals to the inferior limit, we can define the Γ-limit.

Definition A.4. Let X be a topological space. For every function F : X → [−∞,+∞], the

lower semicontinuous envelope sc−F of F is defined for every x ∈ X by

(sc−F )(x) = sup
G∈G(F )

G(x),

where G(F ) is the set of all lower semicontinuous functions G on X such that G(y) ≤ F (y) for

every y ∈ X.

Lemma A.5. If Fn is an increasing sequence, then

Γ− lim
n→+∞

Fn = lim
n→+∞

sc−Fn = sup
n∈N

sc−Fn.

Remark A.6. If Fn is an increasing sequence of lower semicontinuous functions which con-

verges pointwisely to a function F , then F is lower semicontinuous and Fn has a Γ-convergence

to F by Lemma A.5.

Lemma A.7. If the sequence Fn has a Γ-convergence in X to F , and there is a compact set

K ⊂ X such that

inf
x∈X

Fn(x) = inf
x∈K

Fn(x),

then F takes its minimum in X, and

min
x∈X

F (x) = lim
n→+∞

inf
x∈X

Fn(x).

A.2 Regularity of minimizers in t-dependent cases

The following results focus on the regularity of minimizers. Consider the following one dimen-

sional variational problem

I(γ) :=

∫ b

a

F (t, γ(t), γ̇(t))dt+ Ψ(γ(a), γ(b)), (P)

where γ is taken in the class of absolutely continuous curves. Ψ takes its value in R ∪ {+∞}
and stands for the constraints on the two ends of the curves γ.

In the following, we focus on a certain minimizer of the above integral functional, which

is denoted by γ∗ ∈ W 1,1([a, b],M). Due to the Lavrentiev phenomenon, the minimizier may

not be Lipschitz. One can refer [2] for various counterexamples. Thanks to [3], the Lipschitz

regularity of the minimizers still holds for F := L(x, v(x, t), ẋ), where v(x, t) is a Lipschitz

function (see Lemma 2.3 (1)). Let us recall the related results in [3] as follows.
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(♦): F takes its value in R, there exist a constant ε > 0 and a Lebesgue-Borel-measurable map

k : [a, b]× (0,+∞)→ R such that k(t, 1) ∈ L1[a, b], and, for a.e. t ∈ [a, b], all σ > 0

|F (t2, γ∗(t), σγ̇∗(t))− F (t1, γ∗(t), σγ̇∗(t))| ≤ k(t, σ)|t2 − t1|,

where t1, t2 ∈ [t− ε, t+ ε] ∩ [a, b].

Lemma A.8. Let γ∗ be a minimizer of (P). If F satisfies (♦), then there exists an absolutely

continuous function p ∈W 1,1([a, b],R) such that for a.e. t ∈ [a, b], we have

F

(
t, γ∗(t),

γ̇∗(t)

v

)
v − F (t, γ∗(t), γ̇∗(t)) ≥ p(t)(v − 1), ∀v > 0, (W)

and |p′(t)| ≤ k(t, 1) for a.e. t ∈ [a, b].

Lemma A.9. Let γ∗ be a minimizer of (P). Assume F is a Borel measurable function. If F

satisfies (♦) and

(1) Superlinearity: there exists a function Θ : [0,+∞)→ R satisfying

lim
r→+∞

Θ(r)

r
= +∞, and F (t, γ∗(t), ξ) ≥ Θ(‖ξ‖) for all ξ ∈ Tγ∗(t)M.

(2) Local boundedness: there exists ρ > 0 and M ≥ 0 such that for a.e. t ∈ [a, b], F (t, γ∗(t), ξ) ≤
M for all ξ ∈ Tγ∗(t)M with ‖ξ‖ = ρ.

Then the minimizer γ∗ is Lipschitz. Moreover, if ‖γ̇∗(t)‖ > ρ, we take v = ‖γ̇∗(t)‖/ρ > 1 in

(W), then

F

(
t, γ∗(t), ρ

γ̇∗(t)

‖γ̇∗(t)‖

)
≥ ρΘ(‖γ̇∗(t)‖)

‖γ̇∗(t)‖
− ‖p‖∞.

Therefore ‖γ̇∗(t)‖ ≤ max{ρ,R} where R := inf{s : ρΘ(s)
s > M + ‖p‖∞}.

B Proof of Lemma 2.1

When H(x, u, p) is superlinear in p, it is well-known that the functional Lt admits minimizers

in Xt(x). It remains to prove the existence of minimizers of Lt when H(x, u, p) is coercive in

p. Define

Ltn(γ) = ϕ(γ(0)) +

∫ t

0

Ln(γ(s), v(γ(s), s), γ̇(s))ds,

where Ln is defined as in Section 2.1.2. Then each Ltn admits minimizers in Xt(x). To prove

the existence of the minimizers of Lt(γ), we define

m(r) := inf
x∈M

(
inf
‖ẋ‖≥r

L1(x, 0, ẋ)

)
, ∀r ≥ 0.

It is clear that the function m(r) is superlinear, and

m(‖ẋ‖) ≤ Ln(x, 0, ẋ) ≤ Ln(x, u, ẋ) + λ|u|
≤ L(x, u, ẋ) + λ|u|, ∀n ∈ N, ∀(x, u, ẋ) ∈ TM × R.
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For any sequence γn in Xt(x) with limn Lt(γn) < +∞, we have supn
∫ t

0
m(‖γ̇n‖)ds < +∞,

so γn admits a weakly sequentially converging subsequence. By Lemma A.1, the functionals

Lt and Ltn are sequentially weakly lower semicontinuous on Xt(x). Since Xt(x) is a metric

space, the functionals Lt and Ltn are also lower semicontinuous. Note that {Ltn}n∈N is an

increasing sequence, and converges pointwisely to Lt on Xt(x). Both Lt and Ltn(γ) are lower

semicontinuous. We conclude that Γ− limn→+∞ Ltn = Lt on Xt(x) by Lemma A.5.

If the minimizers γn of Ltn are contained in a compact subset of Xt(x), then by Lemma A.7,

one can obtain that Lt admits a minimum point on Xt(x). It remains to show that there exists

a compact set in Xt(x) such that all minimizers γn are contained in this set. Consider the set

Kt(x) :=

{
γ ∈ Xt(x) :

∫ t

0

m(‖γ̇‖)ds ≤ ‖φ‖∞ + Kt+ 2λKt

}
,

where K := supx∈M L(x, 0, 0) and K := ‖v(x, t)‖∞. The set Kt(x) is weakly sequentially

compact in W 1,1([0, t],M). According to [4, Theorem 2.13], Kt(x) is compact in Xt(x). For

the constant curve γx ≡ x, we have∫ t

0

m(‖γ̇x‖)ds ≤ Ltn(γx) + λKt ≤ Lt(γx) + λKt ≤ ‖φ‖∞ + Kt+ 2λKt.

Therefore γx is contained in Kt(x). Similarly, for minimizers γn, we have∫ t

0

m(‖γ̇n‖)ds ≤ Ltn(γn) + λKt ≤ Ltn(γx) + λKt

≤ Lt(γx) + λKt ≤ ‖φ‖∞ + Kt+ 2λKt.

Thus, all γn are contained in Kt(x).

C Proof of Lemma 2.3

Proof. We first prove Item (1). According to (LIP) and the Lipschitz continuity of v(x, t) on

M × [0, T ], for each τ ∈ [0, t], the map s 7→ L(γ(τ), v(γ(τ), s), γ̇(τ)) satisfies the condition (♦),

where k ≡ λ‖∂tv(x, t)‖∞. By Lemma A.9, for every (x, t) ∈M× [0, T ], the minimizers of u(x, t)

are Lipschitz. However, the Lipschitz constant depends on the end point (x, t). We aim to show

that for (x′, t′) sufficiently close to (x, t), the Lipschitz constant of the minimizers of u(x′, t′) is

independent of (x′, t′).

For any r > 0, if d(x, x′) ≤ r and |t− t′| ≤ r/2, where t ≥ r > 0, we denote by γ(s;x, t) and

γ(s;x′, t′) the minimizers of u(x, t) and u(x′, t′) respectively. Then we have

u(x′, t′) =ϕ(γ(0;x′, t′)) +

∫ t′

0

L(γ(s;x′, t′), v(γ(s;x′, t′), s), γ̇(s;x′, t′))ds

≤ϕ(γ(0;x, t)) +

∫ t−r

0

L(γ(s;x, t), v(γ(s;x, t), s), γ̇(s;x, t))ds

+

∫ t′

t−r
L(α(s), v(α(s), s), α̇(s))ds,

where α : [t − r, t′] → M is a geodesic connecting γ(t − r;x, t) and x′ with constant speed.

Noticing that

‖α̇‖ ≤ 1

t′ − (t− r)
(
d(γ(t− r;x, t), x) + d(x, x′)

)
≤ 2

(
1

r

∫ t

t−r
‖γ̇(s;x, t)‖ds+ 1

)
,
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we obtain that ∫ t′

0

L(γ(s;x′, t′), v(γ(s;x′, t′), s), γ̇(s;x′, t′))ds

has a bound depending only on (x, t) and r. By (SL), there exists a constant M(x, t, r) > 0

such that ∫ t′

0

‖γ̇(s;x′, t′)‖ds ≤M(x, t, r),

where t′ ≥ t − r/2 > 0. It means ‖γ̇(s;x′, t′)‖ are equi-integrable. Therefore, for (x′, t′)

sufficiently close to (x, t), there exists a constant R(x, t, r) > 0 and s0 ∈ [0, t′] such that

‖γ̇(s0;x′, t′)‖ ≤ R(x, t, r). By Lemma A.8, there exists an absolutely continuous function

p(t;x′, t′) satisfying |p′(t;x′, t′)| ≤ λ‖∂tv(x, t)‖∞ such that

L(γ(s;x′, t′), v(γ(s;x′, t′), s),
γ̇(s;x′, t′)

θ
)θ

− L(γ(s;x′, t′), v(γ(s;x′, t′), s), γ̇(s;x′, t′)) ≥ p(s;x′, t′)(θ − 1), ∀θ > 0.

One can take θ = 2 and t = s0 to obtain the upper bound of p(s0), and take θ = 1/2 and t = s0

to obtain the lower bound of p(s0). Note that p′(t) is bounded. We finally obtain the bound

of ‖p(t)‖∞, which is independent of (x′, t′). Since L(x, u, ẋ) satisfies (SL), according to Lemma

A.9 and taking ρ = 1, we have

L(γ(s;x′, t′), v(γ(s;x′, t′), s),
γ̇(s;x′, t′)

‖γ̇(s;x′, t′)‖
) ≥ Θ(‖γ̇(s;x′, t′)‖)

‖γ̇(s;x′, t′)‖
− ‖p(s;x′, t′)‖∞.

Therefore, for (x′, t′) sufficiently close to (x, t), the minimizers γ(s;x′, t′) have a Lipschitz

constant independent of (x′, t′).

In order to prove Item (2), we first show that u(x, t) is locally Lipschitz in x. For any δ > 0,

fix (x0, t) ∈M × [δ, T ] and x, x′ ∈ B(x0, δ/2). We denote by d0 = d(x, x′) ≤ δ the Riemannian

distance between x and x′. Then

u(x′, t)− u(x, t) ≤
∫ t

t−d0
L(α(s), v(α(s), s), α̇(s))ds

−
∫ t

t−d0
L(γ(s;x, t), v(γ(s;x, t), s), γ̇(s;x, t))ds,

where γ(s;x, t) is a minimizer of u(x, t) and α : [t − d0, t] → M is a geodesic connecting

γ(t − d0;x, t) and x′ with constant speed. By Lemma 2.3 (1), if x ∈ B(x0, δ/2), the bound of

‖γ̇(s;x, t)‖ depends only on x0 and δ. Noticing that

‖α̇(s)‖ ≤ d(γ(t− d0;x, t), x′)

d0
≤ d(γ(t− d0;x, t), x)

d0
+ 1,

and

d(γ(t− d0;x, t), x) ≤
∫ t

t−d0
‖γ̇(s;x, t)‖ds,

the bound of ‖α̇(s)‖ depends only on x0 and δ. Exchanging the role of (x, t) and (x′, t), one

obtain that

|u(x, t)− u(x′, t)| ≤ J1d(x, x′),
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where J1 depends only on x0 and δ. Since M is compact, we conclude that for t ∈ (0, T ], the

value function u(·, t) is Lipschitz on M .

We are now going to show the locally Lipschitz continuity of u(x, t) in t. Given t0 ≥ 3δ/2

and t, t′ ∈ [t0 − δ/2, t0 + δ/2], without any loss of generality, we assume t′ > t. Then

u(x, t′)− u(x, t) ≤u(γ(t;x, t′), t)− u(x, t)

+

∫ t′

t

L(γ(s;x, t′), v(γ(s;x, t′), s), γ̇(s;x, t′))ds,

where the bound of ‖γ̇(s;x, t′)‖ depends only on t0 and δ. We have shown that for t ≥ δ, the

following holds

u(γ(t;x, t′), t)− u(x, t) ≤ J1d(γ(t;x, t′), x) ≤ J1

∫ t′

t

‖γ̇(s;x, t′)‖ds ≤ J2(t′ − t).

Thus, u(x, t′)− u(x, t) ≤ J3(t′ − t), where J3 depends only on t0 and δ. The condition t′ < t is

similar. We conclude the locally Lipschitz continuity of u(x, ·) on (0, T ].

At last, we prove Item (3). We first prove that u(x, t) is continuous at t = 0. For each

ϕ ∈ C(M), there is a sequence ϕm ∈ Lip(M) converging to ϕ uniformly. We take ϕ and

ϕm as the initial functions in (2.7), and denote by u(x, t) and um(x, t) the corresponding

value functions respectively. Since v(x, t) is fixed, by the non-expansiveness of the Lax-Oleinik

semigroup, we have ‖u(x, t) − um(x, t)‖∞ ≤ ‖ϕ − ϕm‖∞. Thus, without loss of generality, we

assume the initial function to be Lipschitz in the following discussion. Take a constant curve

α(t) ≡ x. Let γ : [0, t]→M be a minimizer of u(x, t). It is obvious that

u(x, t) = ϕ(γ(0)) +

∫ t

0

L(γ(s), v(γ(s), s), γ̇(s))ds ≤ ϕ(x) +

∫ t

0

L(x, v(x, s), 0)ds,

so lim supt→0+ u(x, t) ≤ ϕ(x). By (SL), there exists a constant C > 0 such that∫ t

0

L(γ(τ), v(γ(τ), τ), γ̇(τ))dτ ≥
∫ t

0

‖∂xϕ‖∞‖γ̇(τ)‖dτ + Ct

≥ ‖∂xϕ‖∞d(γ(0), γ(t)) + Ct,

which implies that ∫ t

0

L(γ(τ), v(γ(τ), τ), γ̇(τ))dτ + ϕ(γ(0)) ≥ ϕ(x) + Ct.

Therefore lim inft→0+ u(x, t) ≥ ϕ(x). Combining with Lemma 2.3 (2), u(x, t) is continuous on

M × [0, T ].

By a standard argument, one can show that the value function u(x, t) is a solution of (2.8).

We omit the details.

D Weak KAM solutions and viscosity solutions

Following Fathi [13], one can extend the definitions of backward and forward weak KAM solu-

tions of equation (1.2) by using absolutely continuous calibrated curves instead of C1 curves.
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Definition D.1. A function u− ∈ C(M) is called a backward weak KAM solution of (1.2) if

the following hold.

(1) For each absolutely continuous curve γ : [t′, t]→M , we have

u−(γ(t))− u−(γ(t′)) ≤
∫ t

t′
L(γ(s), u−(γ(s)), γ̇(s))ds.

The above condition reads that u− is dominated by L and denoted by u− ≺ L.

(2) For each x ∈ M , there exists an absolutely continuous curve γ− : (−∞, 0] → M with

γ−(0) = x such that

u−(x)− u−(γ−(t)) =

∫ 0

t

L(γ−(s), u−(γ−(s)), γ̇−(s))ds, ∀t < 0.

The curves satisfying the above equality are called (u−, L, 0)-calibrated curves.

A forward weak KAM solution of (1.2) can be defined in a similar manner. We omit the

details.

Proposition D.2. If u ≺ L, then u is a Lipschitz function on M .

Proof. For each x, y ∈ M , let α : [0, d(x, y)/δ] → M be a geodesic of length d(x, y), with

constant speed ‖α̇‖ = δ and connecting x and y. Then

L(α(s), u(α(s)), α̇(s)) ≤ C̄ + λ‖u‖∞, ∀s ∈ [0, d(x, y)/δ].

Then by u ≺ L we have

u(y)− u(x) ≤
∫ d(x,y)/δ

0

L(α(s), u(α(s)), α̇(s))ds ≤ 1

δ
(C̄ + λ‖u‖∞)d(x, y).

Exchanging the role of x and y, we get the Lipschitz continuity of u.

By [13, Corollary 8.3.4], we have

Proposition D.3. Suppose H(t, x, p) is a continuous function, and it is coercive and convex

in p, then u(x, t) is a subsolution of ∂tu + H(t, x, ∂xu) = 0 if u(x, t) is locally Lipschitz and

∂tu+H(t, x, ∂xu) ≤ 0 holds almost everywhere.

Proposition D.4. The following statements are equivalent:

(1) u− is a viscosity solution of (EH);

(2) u− is a fixed point of T−t ;

(3) u− is a backward weak KAM solution.

Similarly, the following statements are also equivalent:

(i) −u+ is a viscosity solution of H(x,−u,−∂xu) = 0;

(ii) u+ is a fixed point of T+
t ;

(iii) u+ is a forward weak KAM solution.
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Proof. By Theorem 1, (2) implies (1). We show that (1) implies (2). Since u− is a viscosity

solution of (EH), the function u(x, t) := u−(x) is the viscosity solution of (CPH) with the

initial condition u(x, 0) = u−(x). By the comparison theorem, we have u(x, t) = T−t u−(x),

which implies u− = T−t u−.

Now we show that (3) implies (2). According to the definition of the backward weak KAM

solution, for u− ∈ S− we have

u−(x) = inf
γ(t)=x

{
u−(γ(0)) +

∫ t

0

L(γ(τ), u−(γ(τ)), γ̇(τ))dτ

}
,

where the infimum is taken in the class of absolutely continuous curves. We show u−(x) ≤
T−t u−(x). The opposite direction is similar. Assume

u−(x) > T−t u−(x).

Let γ : [0, t]→M with γ(t) = x be a minimizer of T−t u−(x). Define

F (τ) := u−(γ(τ))− T−τ u−(γ(τ)).

Since F (t) > 0 and F (0) = 0, there is s0 ∈ [0, t) such that F (s0) = 0 and F (s) > 0 for s ∈ (s0, t].

By definition we have

T−s u−(γ(s)) = T−s0u−(γ(s0)) +

∫ s

s0

L(γ(τ), T−τ u−(γ(τ)), γ̇(τ))dτ,

and

u−(γ(s)) ≤ u−(γ(s0)) +

∫ s

s0

L(γ(τ), u−(γ(τ)), γ̇(τ))dτ,

which implies

F (s) ≤ λ
∫ s

s0

F (τ)dτ.

By the Gronwall inequality, we conclude F (s) ≡ 0 for all s ∈ [s0, t], which contradicts F (t) > 0.

It remains to show (2) implies (3). For each absolutely continuous curve γ : [t′, t]→M , we

have
u−(γ(t))− u−(γ(t′)) = T−t u−(γ(t))− T−t′ u−(γ(t′))

≤
∫ t

t′
L(γ(s), T−s u−(γ(s)), γ̇(s))ds =

∫ t

t′
L(γ(s), u−(γ(s)), γ̇(s))ds,

which implies u− ≺ L. We now show the existence of the (u−, L, 0)-calibrated curve. We

define a sequence of absolutely continuous curves as follows: Let γ0(0) = x and γn : [0, 1]→M

be a minimizer of T−1 u−(γn−1(0)) with γn(1) = γn−1(0). We define γ− : (−∞, 0] → M by

γ−(−t) := γ[t]+1([t] + 1 − t) for all t > 0, which is also absolutely continuous. Here, [t] stands

for the greatest integer not greater than t. Then we have

u−(γ−(−[t]))− u−(γ−(−t)) = T−1 u−(γ[t]+1(1))− T−[t]+1−tu−(γ[t]+1([t] + 1− t))

=

∫ 1

[t]+1−t
L(γ[t]+1(s), T−s u−(γ[t]+1(s)), γ̇[t]+1(s))ds

=

∫ −[t]

−t
L(γ−(s), u−(γ−(s)), γ̇−(s))ds.
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Similarly, one can prove that for all n = 0, 1, . . . ,

u−(γ−(−n))− u−(γ−(−n− 1)) =

∫ −n
−n−1

L(γ−(s), u−(γ−(s)), γ̇−(s))ds.

We conclude that γ− : (−∞, 0]→M is a (u−, L, 0)-calibrated curve.

The proof is now complete.
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