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Abstract

We consider the Hamilton-Jacobi equation

H(x,Du) + λ(x)u = c, x ∈ M,

where M is a connected, closed and smooth Riemannian manifold. The functions H(x, p) and λ(x) are con-
tinuous. H(x, p) is convex, coercive with respect to p, and λ(x) changes the signs. The first breakthrough 
to this model was achieved by Jin-Yan-Zhao [11] under the Tonelli conditions. In this paper, we consider 
more detailed structure of the viscosity solution set and large time behavior of the viscosity solution on the 
Cauchy problem. To the best of our knowledge, it is the first detailed description of the large time behavior 
of the HJ equations with non-monotone dependence on the unknown function.
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1. Introduction and main results

Let H : T ∗M × R → R be a contact Hamiltonian. It turns out that the dependence of H on 
the contact variable u plays a crucial role in exploiting the dynamics generated by H . By using 
previous dynamical approaches, some progress on viscosity solutions of Hamilton-Jacobi (HJ) 
equations have been achieved [16,17,19]. In particular, based on the works mentioned before, the 
structure of the set of solutions can be sketched if H is uniformly Lipschitz in u. Shortly after 
[17] occurred, [12] generalized the results to ergodic problems by using PDE approaches. More 
recently, for a class of HJ equations with non-monotone dependence on u, the first breakthrough 
was achieved by Jin-Yan-Zhao [11] under the Tonelli conditions. In that work, they provided a 
description of the solution set of the stationary equation (formulated as (E0) below) and revealed 
a bifurcation phenomenon with respect to the value c in the right hand side, which opened a 
way to exploit further properties of viscosity solutions beyond well-posedness for HJ equations 
with non-monotone dependence on u. The main results in this paper are motivated by [11]. The 
present paper further discusses the large time behavior of the non-monotone model considered in 
[11]. To the best of our knowledge, Theorems 2 and 3 below are the first detailed description of 
the large time behavior of the HJ equations non-monotone in the unknown function. For another 
result on this topic, one can refer to [10, Theorem 6.5 (3)].

Let us consider the stationary equation:

H(x,Du) + λ(x)u = c, x ∈ M. (E0)

Throughout this paper, we assume M is a closed, connected and smooth Riemannian manifold. 
D denotes the spacial gradient with respect to x ∈ M . Denote by T M and T ∗M the tangent 
bundle and cotangent bundle of M respectively. Let H : T ∗M → R satisfy

(C): H(x, p) is continuous;
(CON): H(x, p) is convex in p, for any x ∈ M ;
(CER): H(x, p) is coercive in p, i.e. lim‖p‖x→+∞ H(x, p) = +∞, where ‖ · ‖x denotes the 

norms induced by g on both T M and T ∗M .

Correspondingly, one has the Lagrangian associated to H :

L(x, ẋ) := sup {〈ẋ, p〉 − H(x,p)},

p∈T ∗

x M
x
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where 〈·, ·〉x represents the canonical pairing between TxM and T ∗
x M . The Lagrangian L(x, ẋ)

satisfies the following properties:

(LSC): L(x, ẋ) is lower semicontinuous in ẋ, and continuous on the interior of its domain 
dom(L) := {(x, ẋ) ∈ T M : L(x, ẋ) < +∞};

(CON): L(x, ẋ) is convex in ẋ, for any x ∈ M .

We also assume λ(x) is continuous and satisfies

(±): there exist x1, x2 ∈ M such that λ(x1) > 0 and λ(x2) < 0.

Throughout this paper, we define

λ0 := ‖λ(x)‖∞ > 0, (1.1)

where ‖ · ‖∞ stands for the supremum norm of the functions on their domains. Based on this 
model, we revealed some different phenomena from the cases with monotone dependence on u
can be revealed.

Remark 1.1. The model (E0) has been considered in [22]. In that paper, the function λ(x) is non-
negative and positive on the projected Aubry set of H(x, p). In this case, the solution of (E0) is 
unique. The asymptotic behavior of the solution of (E0) is also studied in [22] when λ0 → 0+. 
When λ0 → 0+ and the assumption (±) holds, the family of solutions of (E0) may diverge, one 
can refer to [13] for an example.

In [14], the well-posedness of the Lax-Oleinik semigroup was verified for contact HJ equa-
tions under very mild conditions. By virtue of that, we generalize the results in [11] to the cases 
from the Tonelli conditions to the assumptions (C), (CON) and (CER) above. Henceforth, for 
simplicity of notation, we omit the word “viscosity”, if it is not necessary to be mentioned.

Proposition 1.2 (Generalization of [11]). Let

c0 := inf
u∈C∞(M)

sup
x∈M

{
H(x,Du) + λ(x)u

}
. (1.2)

Then c0 is finite. Given c ≥ c0, the ‖ · ‖W 1,∞ -norm of all subsolutions of (E0) is bounded. More-
over,

(1) (E0) has a solution if and only if c ≥ c0;
(2) if c > c0, then (E0) has at least two solutions.

The definition of c0 is inspired by [4]. In light of that, c0 is called the critical value. Now we 
consider the following case with a more general dependence of H in u
H(x,u(x),Du(x)) = c, x ∈ M,

274



P. Ni and L. Wang Journal of Differential Equations 403 (2024) 272–307
where the Hamiltonian H(x, u, p) is continuous, superlinear in p and uniformly Lipschitz in u. 
It was pointed out in [12] that there is a constant c ∈R such that the above equation has viscosity 
solutions. Here we give some examples on the set C of all such c, which reveal the essential 
differences between the monotone cases and the non-monotone cases:

• for classical Tonelli Hamiltonian H(x, p), the set C = {c0}. The number c0 is called the 
Mañé critical value;

• for the discounted Hamilton-Jacobi equation, i.e., the Hamiltonian is of the form λu +
H(x, p) with λ > 0, the set C =R, see for example [6];

• for the model (E0) considered here, the set C = [c0, +∞). Here we note that the non-
emptiness of C is proved under (CER) instead of H(x, p) is superlinear in p. In view of 
the existence result in [12], it means Proposition 1.2 is a non-trivial generalization of [11];

• for the Hamiltonian periodically depending on u, i.e., H(x, u + 1, p) ≡ H(x, u, p), the set 
C is a bounded closed interval, see [15].

Different from the Tonelli case considered in [11], some new ingredients are needed for a 
priori estimates of subsolutions under the assumptions (C), (CON) and (CER). Those estimates 
will be provided in Section 3. The remaining parts of the proof of Proposition 1.2 are similar to 
the one in [11]. We postpone it to Appendix A.3 for consistency.

Motivated by Proposition 1.2, we are devoted to exploiting more detailed information of this 
model. First of all, we obtain

Theorem 1. Let c ≥ c0. There exist the maximal element umax and the minimal element umin in 
the set of solutions of (E0).

Remark 1.3. The viscosity solutions are equivalent to backward weak KAM solutions in our set-
ting (see [14, Proposition D.4]). In terms of the correspondence between backward and forward 
weak KAM solutions (see Proposition 2.8(3) below), it follows from Theorem 1 that there exist 
the maximal and minimal forward weak KAM solutions of (E0). We denote u+

min (resp. u+
max) the 

minimal (resp. maximal) froward weak KAM solution of (E0). One can refer to Proposition 2.1
and (T-) below for the definition of the backward semigroup T −

t and the forward semigroup T +
t . 

By Proposition 2.8(3)(4), there hold

u+
min ≤ umin = lim

t→+∞T −
t u+

min, lim
t→+∞T +

t umax = u+
max ≤ umax.

Let S− (resp. S+) be the set of all backward (resp. forward) weak KAM solutions. Given 
u± ∈ S±, if

u− = lim
t→∞T −

t u+, u+ = lim
t→∞T +

t u−,

then u− (resp. u+) is called a conjugated backward (resp. forward) weak KAM solution. See 
Fig. 1 for a rough description of structure of the solution set of (E0) in general cases, where 
T± := limt→∞ T ±

t , and P− (resp. P+) denotes the set of all conjugated backward (resp. forward) 
weak KAM solutions. For further statement on conjugated weak KAM solutions, one can refer 
to [10, Theorem 6.5 and Theorem 7.1].

By Proposition 1.2(2), (E0) has at least two solutions if c > c0. Then a natural question is to 

figure out what happens if c = c0. In [11], Jin, Yan and Zhao considered the following example:
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Fig. 1. The structure of the solution set of (E0).

Fig. 2. Certain solutions of (1.3) with c = 0.

Example 1.4.

|u′(x)|2 + sinx · u(x) = c, x ∈ S1  [0,2π), (1.3)

where S1 denotes a flat circle with a fundamental domain [0, 2π).

It was shown that c0 = 0 and there are uncountably many solutions of (1.3) in the critical case. 
A rough picture of certain solutions is given by Fig. 2. See [11, Theorem 3.5] for more details.

As a complement, we consider

Example 1.5.

1

2
|u′(x)|2 + sinx · u(x) + cos 2x − 1 = c, x ∈ S1  [0,2π). (1.4)

We will prove that the critical value is also c0 = 0, but (1.4) admits a unique solution in the 
critical case. A rough picture of the solution is given by Fig. 3. See Remark 4.2 below for certain 
generalization of Example 1.5. Those two examples above show various possibilities about the 

solution set of (E0) in the critical case.
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Fig. 3. The unique solution of (1.4) with c = 0.

In the second part, we consider the evolutionary equation:

{
∂tu(x, t) + H(x,Du(x, t)) + λ(x)u(x, t) = c, (x, t) ∈ M × (0,+∞).

u(x,0) = ϕ(x), x ∈ M,
(CP)

where ϕ ∈ C(M). It is well known that the viscosity solution of (CP) is unique (see [10, Corollary 
3.2] for instance). By [14, Theorem 1], this solution can be represented by u(x, t) := T −

t ϕ(x), 
where T −

t : C(M) → C(M) is defined implicitly by

T −
t ϕ(x) = inf

γ (t)=x

⎧⎨
⎩ϕ(γ (0)) +

t∫
0

[
L(γ (τ), γ̇ (τ )) − λ(γ (τ))T −

τ ϕ(γ (τ )) + c
]
dτ

⎫⎬
⎭ , (T-)

where the infimum is taken among absolutely continuous curves γ : [0, t] → M with γ (t) = x.
In order to obtain equi-Lipschitz continuity of {T −

t ϕ}t≥δ for a given δ > 0, we have to 
strengthen the assumptions on H from (CON), (CER) to the following:

(	) H(x, p) is strictly convex in p for any x ∈ M , and there is a superlinear function θ :
[0, +∞) → [0, +∞) such that H(x, p) ≥ θ(‖p‖).

Under the assumption (	), the equi-Lipschitz continuity of {T −
t ϕ}t≥δ follows from the locally 

Lipschitz property and boundedness of T −
t ϕ on M × (0, +∞). From the weak KAM point of 

view, that kind of locally Lipschitz property can be verified by a standard procedure once we 
have the Lipschitz regularity of minimizers of T −

t ϕ(x) (see [7, Lemma 4.6.3]). However, H is 
only supposed to be continuous in our setting. Then one can not use the method of characteristics 
to improve regularity of these minimizers. Following [1], we will deal with that issue by using 
the method of energy estimates. A key ingredient of that method is to establish the Erdmann 
condition for a non-smooth energy function. More precisely, we obtain the following result, 
whose proof is given in Appendix A.4.

Proposition 1.6. Assume (	) holds. If T −
t ϕ(x) has a bound independent of t , then the family 

{T −
t ϕ}t≥δ is equi-Lipschitz continuous, where δ is an arbitrarily positive constant.

Let us recall umax denotes the maximal solution of (E0), and u+
min denotes its minimal froward 

weak KAM solution. By Remark 1.3, u+
min ≤ umax on M . Both of them play important roles in 

characterizing the large time behavior of the solution of (CP). By assuming (	) holds, we obtain 

the following two results.
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Theorem 2. Let u(x, t) be the solution of (CP) with c ≥ c0. Then

(1) if the initial data ϕ ≥ umax, then u(x, t) converges to umax uniformly on M as t → +∞;
(2) if there is a point x0 ∈ M such that ϕ(x0) < u+

min(x0), then u(x, t) tends to −∞ uniformly 
on M as t → +∞.

Theorem 3. Let u(x, t) be the solution of (CP) with c > c0. If the initial data ϕ > u+
min, then 

u(x, t) converges to umax uniformly on M as t → +∞.

Remark 1.7. For ϕ ≥ u+
min, if there exists x0 ∈ M such that ϕ(x0) = u+

min(x0), then u(x, t) may 
not converge to umax.

• In Example 1.4 with c = c0, for each solution v of (1.3), it is easy to construct an initial data 
ϕ satisfying ϕ ≥ 0 ≥ u+

min and

{x ∈ M | ϕ(x) = u+
min(x)} �= ∅

such that u(x, t) converges to v uniformly on M . In fact, one can take ϕ = v for instance.
• For Example 1.4 with c = 1 > c0, by [11, Theorem 3.14], umin = sinx �= umax and

{x ∈ M | umin(x) = u+
min(x)} �= ∅.

Then one can take ϕ = sinx such that u(x, t) converges to umin uniformly on M .
• More exotically, u(x, t) may converge (up to a subsequence) uniformly to a nontrivial time 

periodic solution of

∂tu(x, t) + H(x,Du(x, t)) + λ(x)u(x, t) = c.

Inspired by [21, Example 5.1] and [20, Theorem 1.5], we consider evolutionary the HJ equa-
tion: ⎧⎪⎨

⎪⎩
∂tu(x, t) + 1

2
|Du(x, t)|2 + Du(x, t) +

(
sin 2πx − 1

2

)
u(x, t) = 0,

u(x,0) = ϕ(x), x ∈ S1  [0,1),

(CPe)

and its associated stationary equation:

1

2
|Du|2 + Du +

(
sin 2πx − 1

2

)
u = 0. (Se)

It is clear u0 ≡ 0 is a solution of (Se). According to [21, Lemma 2.2(1)], there exists a strict 
subsolution v(x) with v > 0 on S1. It implies the critical value (defined by (1.2)) c0 < 0. 
By Lemma 5.4 below, umax = limt→+∞ T −

t v > v > 0 and u+
min = limt→+∞ T +

t v. Since 
v > u0 ≡ 0, we get T +

t v > T +
t u0 ≡ 0. Then u+

min ≥ 0. Since u0 ≡ 0 is a classical solution 
of (Se), u+

min ≤ u0 ≡ 0. We conclude that u+
min ≡ 0. Now let ϕ ≥ 0 be a non-vanishing initial 
data ϕ ≥ 0 satisfying

278



P. Ni and L. Wang Journal of Differential Equations 403 (2024) 272–307
{x ∈ S1 | ϕ(x) = 0} �= ∅.

Similar to [20, Theorem 1.5], we can prove that wϕ(x, t) := limn→+∞ T −
n+t ϕ exists for n ∈

N . In light of [21, Theorem 1.4], wϕ(x, t) is a nontrivial time periodic solution of

∂tu(x, t) + 1

2
|Du(x, t)|2 + Du(x, t) +

(
sin 2πx − 1

2

)
u(x, t) = 0.

Remark 1.8. Now we recall the previous results on the large time behavior of the HJ equations 
monotone in the unknown function. Consider the evolutionary equation:

{
∂tu(x, t) + H(x,u(x, t),Du(x, t)) = 0, (x, t) ∈ M × (0,+∞).

u(x,0) = ϕ(x), x ∈ M,
(A0)

and the stationary equation:

H(x,u(x),Du(x)) = 0 (B0)

(a) When the Hamiltonian is increasing in the unknown function, according to [16, Theorem 
1.4], the solution of (A0) uniformly converges to a solution of (B0) as t → +∞ for each 
initial data ϕ(x).

(b) When the Hamiltonian is strictly decreasing in the unknown function, according to [19, 
Theorem 2], if ϕ > u+, then the solution of (A0) uniformly converges to +∞ as t → +∞. 
If there is a point x0 such that ϕ(x0) < u+(x0), then the solution of (A0) uniformly converges 
to −∞ as t → +∞. Here u+ is the unique forward weak KAM solution of (B0).

From the results above, we can see that the non-monotone model (CP) has both characteristics 
of Case (a) and Case (b).

The rest of this paper is organized as follows. Section 2 gives some preliminaries on T ±
t , 

weak KAM solutions and Aubry sets. In Section 3, a priori estimates on subsolutions of (E0)
are established. The proof of Theorem 1 and a detailed analysis of Example 1.5 are given in 
Section 4. Theorem 2 and Theorem 3 are proved in Section 5. For the sake of completeness, 
some auxiliary results are proved in Appendix A.

2. Preliminaries

In this part, we collect some facts on T ±
t , weak KAM solutions and Aubry sets. These facts 

hold under more general assumptions on the dependence of u. We denote by (x, u, p) a point in 
T ∗M ×R, where (x, p) ∈ T ∗M and u ∈R. Let H : T ∗M ×R → R be a continuous Hamiltonian 
satisfying

(CON): H(x, u, p) is convex in p, for any (x, u) ∈ M ×R;
(CER): H(x, u, p) is coercive in p, i.e. lim‖p‖x→+∞(infx∈M H(x, 0, p)) = +∞;
(LIP): H(x, u, p) is Lipschitz in u, uniformly with respect to (x, p), i.e., there exists � > 0
such that |H(x, u, p) − H(x, v, p)| ≤ �|u − v|, for all (x, p) ∈ T ∗M and all u, v ∈ R.

279



P. Ni and L. Wang Journal of Differential Equations 403 (2024) 272–307
Correspondingly, one has the Lagrangian associated to H :

L(x,u, ẋ) := sup
p∈T ∗

x M

{〈ẋ, p〉x − H(x,u,p)}.

Due to the absence of superlinearity of H , the corresponding Lagrangian L may take the value 
+∞. Define

dom(L) := {(x, ẋ, u) ∈ T M ×R | L(x,u, ẋ) < +∞}.

By the Lipschitz dependence of L in u, we have (see [14, Remark 1.2])

dom(L) = {(x, ẋ) ∈ T M | L(x,0, ẋ) < +∞} ×R.

Then L(x, u, ẋ) satisfies the following properties:

(LSC): L(x, u, ẋ) is lower semicontinuous, and continuous on the interior of dom(L);
(CON): L(x, u, ẋ) is convex in ẋ, for any (x, u) ∈ M ×R;
(LIP): L(x, u, ẋ) is Lipschitz in u, uniformly with respect to (x, ẋ), i.e., there exists � > 0 such 

that |L(x, u, ẋ) − L(x, v, ẋ)| ≤ �|u − v|, for all (x, ẋ, u) and (x, ẋ, v) ∈ dom(L).

Here (LSC) follows from basic facts of convex analysis (see [5, Theorem A.3]).

Proposition 2.1. [14, Theorem 1] Both the backward Lax-Oleinik semigroup

T −
t ϕ(x) = inf

γ (t)=x

⎧⎨
⎩ϕ(γ (0)) +

t∫
0

L(γ (τ), T −
τ ϕ(γ (τ )), γ̇ (τ ))dτ

⎫⎬
⎭ (2.1)

and the forward Lax-Oleinik semigroup

T +
t ϕ(x) = sup

γ (0)=x

⎧⎨
⎩ϕ(γ (t)) −

t∫
0

L(γ (τ), T +
t−τ ϕ(γ (τ )), γ̇ (τ ))dτ

⎫⎬
⎭ , (2.2)

are well-defined for ϕ ∈ C(M). The infimum (resp. supremum) is taken among absolutely 
continuous curves γ : [0, t] → M with γ (t) = x (resp. γ (0) = x). If ϕ is continuous, then 
u(x, t) := T −

t ϕ(x) represents the unique continuous viscosity solution of (A0). If ϕ is Lipschitz 
continuous, then u(x, t) := T −

t ϕ(x) is also locally Lipschitz continuous on M × [0, +∞).

Proposition 2.2. [14, Proposition 3.1] The Lax-Oleinik semigroups have the following properties

(1) For ϕ1 and ϕ2 ∈ C(M), if ϕ1(x) < ϕ2(x) for all x ∈ M , we have T −
t ϕ1(x) < T −

t ϕ2(x) and 
T +

t ϕ1(x) < T +
t ϕ2(x) for all (x, t) ∈ M × (0, +∞).

(2) Given any ϕ and ψ ∈ C(M), we have ‖T −
t ϕ − T −

t ψ‖∞ ≤ e�t‖ϕ − ψ‖∞ and ‖T +
t ϕ −
T +
t ψ‖∞ ≤ e�t‖ϕ − ψ‖∞ for all t > 0.
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Following Fathi [7], one can extend the definitions of backward and forward weak KAM 
solutions of equation (B0) by using absolutely continuous calibrated curves instead of C1 curves.

Definition 2.3. A function u− ∈ C(M) is called a backward weak KAM solution of (B0) if

(1) For each absolutely continuous curve γ : [t ′, t] → M , we have

u−(γ (t)) − u−(γ (t ′)) ≤
t∫

t ′
L(γ (s), u−(γ (s)), γ̇ (s))ds.

The above condition reads that u− is dominated by L and denoted by u− ≺ L.
(2) For each x ∈ M , there exists an absolutely continuous curve γ− : (−∞, 0] → M with 

γ−(0) = x such that

u−(x) − u−(γ−(t)) =
0∫

t

L(γ−(s), u−(γ−(s)), γ̇−(s))ds, ∀t < 0.

The curves satisfying the above equality are called (u−, L, 0)-calibrated curves.

A forward weak KAM solution of (B0) can be defined in a similar manner. Similar to [18, 
Proposition 2.8], one has

Proposition 2.4. Let ϕ ∈ C(M). Then

−T +
t (−ϕ) = T̄ −

t ϕ, −T −
t (−ϕ) = T̄ +

t ϕ, ∀t ≥ 0, (2.3)

where T̄ ±
t denote the Lax-Oleinik semigroups associated to L(x, −u, −ẋ).

The following two results are well known for Hamilton-Jacobi equations independent of u. 
They are also true in contact cases. We will prove them in Appendices A.1 and A.2. Proposi-
tion 2.5 provides some equivalent characterizations of Lipschitz subsolutions. Proposition 2.6
shows that T +

t is a ‘weak inverse’ of T −
t .

Proposition 2.5. Let ϕ ∈ Lip(M). The following conditions are equivalent:

(1) ϕ is a Lipschitz subsolution of (B0);
(2) ϕ ≺ L;
(3) for each t ≥ 0,

T −
t ϕ ≥ ϕ ≥ T +

t ϕ.
Proposition 2.6. For each ϕ ∈ C(M), we have T +
t ◦ T −

t ϕ ≤ ϕ ≤ T −
t ◦ T +

t ϕ for all t ≥ 0.
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The following three results come from [14], which give some connections among the fixed 
points of T ±

t , the lower (resp. upper) half limit, backward (resp. forward) weak KAM solutions 
and Aubry sets.

Proposition 2.7. [14, Proposition D.4] Let u− ∈ C(M). The following statements are equivalent:

(1) u− is a fixed point of T −
t ;

(2) u− is a backward weak KAM solution of (B0);
(3) u− is a viscosity solution of (B0).

Similarly, let v+ ∈ C(M). The following statements are equivalent:

(1’) v+ is a fixed point of T +
t ;

(2’) v+ is a forward weak KAM solution of (B0);
(3)’ −v+ is a viscosity solution of H(x, −u(x), −Du(x)) = 0.

Proposition 2.8. [14, Theorem 3 and Remark 3.5] Let ϕ ∈ C(M).

(1) If T −
t ϕ(x) has a bound independent of t , then the lower half limit

ϕ̌(x) = lim
r→0+ inf{T −

t ϕ(y) : d(x, y) < r, t > 1/r}

is a Lipschitz solution of (B0).
(2) If T +

t ϕ(x) has a bound independent of t , then the upper half limit

ϕ̂(x) = lim
r→0+ sup{T +

t ϕ(y) : d(x, y) < r, t > 1/r},

is a Lipschitz forward weak KAM solution of (B0).
(3) Let u− be a solution of (B0). Then T +

t u− ≤ u−. The limit u+ := limt→+∞ T +
t u− exists, and 

u+ is a forward weak KAM solution of (B0).
(4) Let v+ be a forward weak KAM solution of (B0). Then T −

t v+ ≥ v+. The limit v− :=
limt→+∞ T −

t v+ exists, and v− is a solution of (B0).

Proposition 2.9. [14, Theorem 3] Let u− (resp. u+) be a solution (resp. forward weak KAM 
solution) of (B0). We define the projected Aubry set with respect to u− by

Iu− := {x ∈ M : u−(x) = lim
t→+∞T +

t u−(x)}.

Correspondingly, we define the projected Aubry set with respect to u+ by

Iu+ := {x ∈ M : u+(x) = lim
t→+∞T −

t u+(x)}.

Both Iu− and Iu+ are nonempty. In particular, if u+(x) = limt→+∞ T +
t u−(x) and u−(x) =
limt→+∞ T −
t u+(x), then
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Iu− = Iu+ ,

which is also denoted by I(u−,u+), following the notation introduced by Fathi [7].

3. Some estimates on subsolutions

In this section, we assume the existence of subsolutions of (E0) and prove some a priori
estimates on subsolutions. The existence of subsolutions will be verified for c ≥ c0 in Proposi-
tion A.6 below.

Let L(x, ẋ) be the Lagrangian associated to H(x, p). Let T ±
t be the Lax-Oleinik semigroups 

associated to

L(x, ẋ) − λ(x)u(x) + c.

Similar to [9, Proposition 2.1], one can prove the local boundedness of L(x, ẋ) in a neighborhood 
of the zero section of T M .

Lemma 3.1. Let H(x, p) satisfy (C)(CON)(CER), there exist constants δ > 0 and CL > 0 such 
that the Lagrangian L(x, ẋ) associated to H(x, p) satisfies

L(x, ξ) ≤ CL, ∀(x, ξ) ∈ M × B̄(0, δ). (3.1)

Throughout this paper, we define

μ := diam(M)/δ, (3.2)

where diam(M) denotes the diameter of M .

Lemma 3.2. Let ϕ ∈ C(M). Then

(1) T −
t ϕ has an upper bound independent of t;

(2) T +
t ϕ has a lower bound independent of t .

Proof. Taking x1 ∈ M with λ(x1) > 0. We first show

T −
t ϕ(x1) ≤ max

{
ϕ(x1),

L(x1,0) + c

λ(x1)

}
, ∀t ≥ 0.

Otherwise, there is t > 0 such that

T −
t ϕ(x1) > max

{
ϕ(x1),

L(x1,0) + c

λ(x1)

}
≥ L(x1,0) + c

λ(x1)
.

There are two cases:
(i) For all s ∈ [0, t], we have

− L(x1,0) + c

Ts ϕ(x1) >

λ(x1)
.
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Taking the constant curve γ ≡ x1, we have

T −
t ϕ(x1) ≤ ϕ(x1) +

t∫
0

[
L(x1,0) + c − λ(x1)T

−
s ϕ(x1)

]
ds < ϕ(x1),

which also leads to a contradiction.
(ii) There is t0 ≥ 0 such that

T −
t0

ϕ(x1) = L(x1,0) + c

λ(x1)
,

and

T −
s ϕ(x1) >

L(x1,0) + c

λ(x1)
, ∀s ∈ (t0, t].

Taking the constant curve γ ≡ x1, we have

T −
t ϕ(x1) ≤ T −

t0
ϕ(x1) +

t∫
0

[
L(x1,0) + c − λ(x1)T

−
s ϕ(x1)

]
ds <

L(x1,0) + c

λ(x1)
,

which leads to a contradiction.
We then prove that for all x ∈ M and all t > 0, T −

t ϕ(x) is bounded from above. It suffices to 
prove that for all x ∈ M and t > 0, T −

t+μϕ(x) is bounded from above, where μ is given by (3.2). 
Let α : [0, μ] → M be a geodesic connecting x1 and x with constant speed, then ‖α̇‖ ≤ δ. Let

K0 := max

{
ϕ(x1),

L(x1,0) + c

λ(x1)

}
.

Given x �= x1. We assume T −
t+μϕ(x) > K0. Otherwise the proof is completed. Since 

T −
t ϕ(x1) ≤ K0, there exists σ ∈ [0, μ) such that T −

t+σ ϕ(α(σ )) = K0 and T −
t+sϕ(α(s)) > K0

for all s ∈ (σ, μ]. By definition

T −
t+sϕ(α(s)) ≤ T −

t+σ ϕ(α(σ )) +
s∫

σ

[
L(α(τ), α̇(τ )) − λ(α(τ)) · T −

t+τ ϕ(α(τ)) + c

]
dτ

= K0 +
s∫

σ

[
L(α(τ), α̇(τ )) − λ(α(τ)) · T −

t+τ ϕ(α(τ)) + c

]
dτ,
which implies
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T −
t+sϕ(α(s)) − K0 ≤

s∫
σ

[
L(α(τ), α̇(τ )) − λ(α(τ)) · T −

t+τ ϕ(α(τ)) + c

]
dτ

≤
s∫

σ

[
L(α(τ), α̇(τ )) − λ(α(τ)) · K0 + c

]
dτ + λ0

s∫
σ

[
T −

t+τ ϕ(α(τ)) − K0

]
dτ

≤ L0μ + λ0

s∫
σ

[
T −

t+τ ϕ(α(τ)) − K0

]
dτ,

where λ0 is given by (1.1) and

L0 := CL + λ0K0 + c,

where CL is given by (3.1). By the Gronwall inequality, we have

T −
t+sϕ(α(s)) − K0 ≤ L0μeλ0(s−σ) ≤ L0μeλ0μ, ∀s ∈ (σ,μ].

Taking s = μ we have T −
t+μϕ(x) ≤ K0 + L0μeλ0μ.

Similar to the argument above, by choosing constant curve γ (τ) ≡ x2 with τ ∈ [0, t] and 
replacing T −

t+μϕ by T +
t+μϕ, one has

T +
t ϕ(x) ≥ min

{
ϕ(x2),

L(x2,0) + c

λ(x2)

}
− L0μeλ0μ. (3.3)

This completes the proof. �
Corollary 3.3. Let u0 be a Lipschitz subsolution of (E0). Then T −

t u0 (resp. T +
t u0) has an upper 

(resp. lower) bound independent of t and u0.

Proof. We only prove T −
t u0 has an upper bound independent of t and u0. The case with T +

t u0
is similar. Let

e0 := min
(x,p)∈T ∗M

H(x,p). (3.4)

By (CER), e0 is finite. By the definition of the subsolution, H(x1, p) + λ(x1)u0(x1) � c for any 
p ∈ D∗u0(x1), where D∗ denotes the reachable gradients. It implies

λ(x1)u0(x1)� c − min
(x,p)∈T ∗M

H(x,p) = c − e0.

Hence, for each subsolution u0, we have

u0(x1) ≤ c − e0

λ(x1)
.

Let
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K0 := c − e0

λ(x1)
, L0 := CL + λ0K0 + c,

where λ0 is given by (1.1). Here we note that

L(x1,0) + c = sup
p∈T ∗

x M

(−H(x1,p)) + c ≤ − min
(x,p)∈T ∗M

H(x,p) + c = c − e0.

By Lemma 3.2, we have

T −
t u0(x) �K0 + L0μeλ0μ. (3.5)

This completes the proof. �
Proposition 3.4. There exists a constant C > 0 such that for any subsolution u of (E0), there 
holds

‖u‖W 1,∞ � C.

Proof. By Proposition 2.5, for each t ≥ 0,

T +
t u ≤ u ≤ T −

t u.

By Corollary 3.3, there exist C1, C2 independent of u such that

C2 ≤ u ≤ C1.

For each x, y ∈ M , let α : [0, d(x, y)/δ] → M be a geodesic of length d(x, y) with constant 
speed ‖α̇‖ = δ and connecting x and y, where d(x, y) denotes the distance between x and y
induced by the Riemannian metric g on M . Then

L(α(s), α̇(s)) ≤ CL, ∀s ∈ [0, d(x, y)/δ].

By Proposition 2.5,

u(y) − u(x) ≤
d(x,y)/δ∫

0

[
L(α(s), α̇(s)) − λ(α(s))u(α(s)) + c

]
ds

≤ 1

δ

(
CL + λ0 max{|C1|, |C2|} + c

)
d(x, y) =: κd(x, y).

Note that κ is independent of the choice of the subsolution u. We get the equi-Lipschitz continuity 

of u by exchanging the role of x and y. �
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Proposition 3.5. Let u0 be a Lipschitz subsolution of (E0). Then

u− := lim
t→+∞T −

t u0(x), u+ := lim
t→+∞T +

t u0(x)

exist, and the limit procedure is uniform in x. Moreover, u− is a solution of (E0), and u+ is a 
forward weak KAM solution of (E0). In particular, (E0) has a solution u− for c ≥ c0.

Proof. We only prove that u− := limt→+∞ T −
t u0(x) exists, and it is a viscosity solution of (E0). 

The existence of u+ is similar. By Proposition 2.8

ǔ−(x) := lim
r→0+ inf{T −

t u0(y) : d(x, y) < r, t > 1/r}

is a solution of (E0). By Proposition 2.5(3) and Corollary 3.3, for a given x ∈ M , the limit 
limt→+∞ T −

t u0(x) exists. By definition, we have

ǔ−(x) ≤ lim
t→+∞T −

t u0(x).

Using Proposition 2.5(3) again, T −
t u0 is increasing in t for all t > 0, we have

T −
t u0(x) = lim

r→0+ inf{T −
t u0(y) : d(x, y) < r}

≤ lim
r→0+ inf{T −

t+su0(y) : d(x, y) < r, t + s > 1/r} = ǔ−(x).

Then limt→+∞ T −
t u0 = ǔ−. Note that ǔ− is a solution of (E0). By Dini’s theorem, the family 

{T −
t u0}t>0 uniformly converges to ǔ−. �

4. Structure of the solution set of (E0)

Let S− (resp. S+) be the set of all solutions (resp. forward weak KAM solution) of (E0).

4.1. The maximal solution

We first prove the existence of the maximal solution. Since each solution is a subsolution, 
by Proposition 3.4, there are C1 and C2 such that C2 ≤ u− ≤ C1 for all u− ∈ S−. Note that all 
solutions of (E0) are fixed points of T −

t . We take a continuous function ϕ > C1 as the initial data. 
By Proposition 2.2 (1), T −

t ϕ is larger than every solution of (E0). By Lemma 3.2(1), T −
t ϕ has 

an upper bound independent of t . By Proposition 2.8 (1), the lower half limit

ϕ̌(x) = lim
r→0+ inf{T −

t ϕ(y) : d(x, y) < r, t > 1/r}

is a Lipschitz continuous viscosity solution of (E0). Since T −
t ϕ is larger than every solution of 
(E0), we have
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ϕ̌(x) = lim
r→0+ inf{T −

t ϕ(y) : d(x, y) < r, t > 1/r}
≥ lim

r→0+ inf{v−(y) : d(x, y) < r} = v−(x),

for all v− ∈ S−. Thus, ϕ̌(x) is the maximal solution of (E0).

4.2. The minimal solution

Since each forward weak KAM solution is dominated by L(x, ẋ) − λ(x)u + c, by Propo-
sition 2.7, it is a subsolution of (E0). By Proposition 3.4, there are C1 and C2 such that 
C2 ≤ u+ ≤ C1 for all u+ ∈ S+. We take a continuous function ϕ < C2 as the initial data. 
By Proposition 2.2 (1), T +

t ϕ is smaller than every forward weak KAM solution of (E0). By 
Lemma 3.2(2), T +

t ϕ has a lower bound independent of t . By Proposition 2.8 (2), the upper half 
limit

ϕ̂(x) = lim
r→0+ sup{T +

t ϕ(y) : d(x, y) < r, t > 1/r}

is a forward weak KAM solution of (E0). Since T +
t ϕ is smaller than every forward weak KAM 

solutions of (E0), we have

ϕ̂(x) = lim
r→0+ sup{T +

t ϕ(y) : d(x, y) < r, t > 1/r}
≤ lim

r→0+ sup{v+(y) : d(x, y) < r} = v+(x),

for all v+ ∈ S+. Thus, ϕ̂(x) is the minimal forward weak KAM solution of (E0). By Proposi-
tion 2.8 (4), ϕ̂∞ := limt→+∞ T −

t ϕ̂ exists, and it is a solution of (E0).

Lemma 4.1. ϕ̂∞ is the minimal solution of (E0).

Proof. Define

P− := {u− ∈ S− : ∃u+ ∈ S+ such that u− = lim
t→+∞T −

t u+}.

We first prove that for each v− ∈ P−, there holds v− ≥ ϕ̂∞. In fact, by definition of P−, there is 
u+ ∈ S+ such that v− = limt→+∞ T −

t u+. Since ϕ̂ is the minimal forward weak KAM solution, 
we have

u+ ≥ ϕ̂.

Acting T −
t on both sides of the inequality above, and letting t → +∞, we have v− ≥ ϕ̂∞.

We then prove that for each v− ∈ S−\P−, v− ≥ ϕ̂∞ still holds. Let v+ := limt→+∞ T +
t v−

and u− := limt→+∞ T −
t v+. Then u− ∈ P−, which implies u− ≥ ϕ̂∞. By Proposition 2.8 (3), 

v+ ≤ v−. Then we have T −
t v+ ≤ T −

t v− = v−. Taking t → +∞ we get u− ≤ v−. Therefore, 
v− ≥ u− ≥ ϕ̂∞. �
So far, we complete the proof of Theorem 1.
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4.3. On Example (1.5)

The Hamiltonian of (1.4) is formulated as

H(x,u,p) = p2

2
+ sinx · u + cos 2x − 1. (4.1)

We first show c0 = 0. Assume (1.4) admits a smooth subsolution u0 when c < 0, then we have 
|u′

0(0)|2 ≤ 2c < 0, which is impossible. When c = 0, the constant function ϕ ≡ 0 is a subsolution 
of (1.4). Therefore c0 = 0. By Proposition 3.5, there is a solution u− of (1.4) given by

u− := lim
t→+∞T −

t ϕ.

Since T −
t ϕ ≥ ϕ, then u− ≥ 0.

We then divide the proof into the following steps:

• In Step 1, we discuss the dynamical behavior of the contact Hamiltonian flow �H
t generated 

by H(x, u, p), which is restricted on a two dimensional energy shell M0.
� In Step 1.1, we show that the non-wandering set of �H

t consists of four fixed points;
� In Step 1.2, we classify these fixed points by linearization;
� In Step 1.3, we show that for each solution v− of (1.4), the α-limit set of any (v−, L, 0)-

calibrated curve γ : (−∞, 0] → S1 with γ (0) �= π/2 and 3π/2 can only be 0 or π . We 
only focus on the projected α-limit set defined on S1. For simplicity, we define

α(γ ) := {x ∈ S1 : there exists a sequence tn → −∞ such that |γ (tn) − x| → 0},

where γ : (−∞, 0] → S1 is a (v−, L, 0)-calibrated curve. Moreover, we check the 
constant curves γ (t) ≡ 0, π are calibrated curves, which implies v−(0) = v−(π) = 0, 
v′−(0) = v′−(π) = 0.

• In Step 2, we prove the uniqueness of the solution v− of (1.4).
� In Step 2.1, we prove that v− is unique near 0 and π ;
� In Step 2.2, we prove that v− is unique on [π, 2π) by the comparison along calibrated 

curves via the Gronwall inequality. The uniqueness of v− on [0, π] is guaranteed by the 
comparison principle for the Dirichlet problem.

Step 1. The dynamical behavior of the contact Hamiltonian flow.
For each solution v− of (1.4), let γ : (−∞, 0] → S1 be a (v−, L, 0)-calibrated curve. Similar 

to the analysis at the beginning of [11, Section 3.2], the derivative v′−(γ (t)) exists for each 
t ∈ (−∞, 0) and the orbit (γ (t), v−(γ (t)), v′−(γ (t))) satisfies the contact Hamilton equations 
generated by the Hamiltonian H(x, u, p) defined in (4.1). Then the proof of the uniqueness of 
the solution of (1.4) is related to the contact Hamiltonian flow �H

t generated by H(x, u, p).
Since c0 = 0 and H(γ (t), v−(γ (t)), v′−(γ (t))) = 0 for t ∈ (−∞, 0), we discuss the flow on 

the two dimensional energy shell
M0 := {(x,u,p) ∈ T ∗S1 ×R : H(x,u,p) = 0}.
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Note that along the contact Hamiltonian flow, we have dH/dt = −H∂H/∂u, which equals to 
zero on the set M0. Thus, M0 is an invariant set under the action of �H

t . Since we are interested 
in the orbit (γ (t), v−(γ (t)), v′−(γ (t))), we then consider the flow �H

t restrict on M0. The contact 
Hamilton equations then reduce to

⎧⎪⎪⎨
⎪⎪⎩

ẋ = p,

ṗ = −(cosx · u − 2 sin 2x) − sinx · p,

u̇ = p2.

(4.2)

Step 1.1. The non-wandering set. We first consider the non-wandering set � of �H
t |M0 . Sup-

pose there is an orbit (x(t), u(t), p(t)) belongs to �. Since u̇ = p2 ≥ 0, u(t) equals to a constant 
cu and p(t) ≡ 0. By ẋ(t) = p(t) = 0, x(t) also equals to a constant cx . By H(x, u, p) = 0 and 
p = 0, we have

sinx · u + cos 2x − 1 = 0.

By p = 0 and ṗ = 0 we have

cosx · u − 2 sin 2x = 0.

A direct calculation shows that the only non-wandering points are

P1 = (0,0,0), P2 = (π,0,0), P3 = (
π

2
,2,0), P4 = (

3π

2
,−2,0).

Step 1.2. The classification of fixed points. We then consider the dynamical behavior of �H
t |M0

near the fixed points. After a translation, we put the fixed points to be the origin. Near the points 
P1 and P2, the linearized equation of (4.2) is

ẋ = p, ṗ = 4x, u̇ = 0.

Thus, P1 and P2 are hyperbolic fixed points for the dynamical system �H
t |M0 . Near the points 

P3 and P4, the linearized equations of (4.2) are

ẋ = p, ṗ = −2x − p, u̇ = 0

and

ẋ = p, ṗ = −2x + p, u̇ = 0

respectively. Thus, P3 is a stable focus, and P4 is an unstable focus.
Step 1.3. The α-limit set of calibrated curves. The α-limit set of a (v−, L, 0)-calibrated curve γ
is contained in the projection of �. If γ itself is not a fixed point, and the α-limit of γ is a focus, 
then there are two constants t1 < t2 < 0 with γ (t1) = γ (t2) such that v′−(γ (t1)) �= v′−(γ (t2)), 

which is impossible. In other words, the obits near a focus can not form a 1-graph. Thus, the 

290



P. Ni and L. Wang Journal of Differential Equations 403 (2024) 272–307
α-limit of γ : (−∞, 0] → S1 with γ (0) �= π/2, 3π/2 can only be either 0 or π . For constant 
curve γ : (−∞, 0] → S1 with γ (t) ≡ x0 and x0 equals to either 0 or π , we have

v−(x0) − v−(x0) = 0 =
t∫

0

L(x0, v−(x0),0)ds,

where

L(x,u, ẋ) = ẋ2

2
− sinx · u − cos 2x + 1

is the Lagrangian corresponding to H(x, u, p). Then the constant curve γ is a (v−, L, 0)-
calibrated curve. We then have

lim
t→−∞v−(γ (t)) = v−(0) = v−(π) = cu = 0,

and

lim
t→−∞v′−(γ (t)) = v′−(0) = v′−(π) = 0.

Step 2. The uniqueness of the solution v− of (1.4).
Step 2.1. For x ∈ S1\{π/2, 3π/2}, let γ : (−∞, 0] → S1 with γ (0) = x be a (v−, L, 0)-
calibrated curve. We claim that there is a constant δ > 0 such that for x ∈ [0, δ], the α-limit 
of the calibrated curve γ is 0. If not, the α-limit of γ is π for all x ∈ (0, π]. Then v− is de-
creasing on (0, π], since v− is increasing along γ by the last equality of (4.2). By Step 1.3, 
v−(0) = v−(π) = 0, we get v− ≡ 0 on [0, π], which is impossible. By similar arguments, we con-
clude that there is a constant δ > 0 such that the α-limit of γ is 0 for x ∈ [0, δ] ∪[2π −δ, 2π), and 
the α-limit of γ is π for x ∈ [π − δ, π + δ]. Shrink δ if necessary, the 1-graph (x, v−(x), v′−(x))

coincides with the local unstable manifold of P1 (resp. P2) corresponding to the restricted flow 
�H

t |M0 when x ∈ [0, δ] ∪ [2π − δ, 2π) (resp. x ∈ [π − δ, π + δ]). Therefore, the solution v− is 
unique on [0, δ] ∪ [2π − δ, 2π) ∪ [π − δ, π + δ].
Step 2.2. Since sinx ≥ sin δ > 0 for x ∈ [δ, π − δ], by the uniqueness of the solution of the 
Dirichlet problem (cf. [3, Theorem 3.3]), v− is unique on [0, π]. It remains to consider the 
uniqueness of v− for x ∈ [π, 2π). Assume that there are two solutions u− and v− satisfying 
u−(x) > v−(x) at some point x ∈ (π + δ, 3π/2). Let γ be a (v−, L, 0)-calibrated curve with 
γ (0) = x. Without any loss of generality, we assume the α-limit of γ is π . We take t0 < 0 such 
that γ (t0) = π + δ, and define

G(s) := u−(γ (s)) − v−(γ (s)), s ∈ [t0,0].
Then G(t0) = 0 and G(0) > 0. By continuity, there is σ0 ∈ [t0, 0) such that G(σ0) = 0 and 
G(σ) > 0 for all σ ∈ (σ0, 0]. By definition we have

u−(γ (σ )) − u−(γ (σ0)) ≤
σ∫
L(γ (s), u−(γ (s)), γ̇ (s))ds,
σ0
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and

v−(γ (σ )) − v−(γ (σ0)) =
σ∫

σ0

L(γ (s), v−(γ (s)), γ̇ (s))ds,

which implies

G(σ) ≤
σ∫

σ0

G(s)ds.

By the Gronwall inequality, we have G(σ) ≡ 0 for all σ ∈ (σ0, 0], which contradicts u−(x) >
v−(x). The case x ∈ (3π/2, 2π − δ) is similar. By the continuity of v− at 3π/2, we finally 
conclude that the solution is unique on [π, 2π).

Remark 4.2. The method introduced in this section can be generalized to the following case

H(x,Du) + λ(x)u = c, x ∈ S1,

where λ(x) and H(x, p) are of class C3 and

(i) the zero points of λ(x) are x1 and x2, and λ′(x) �= 0 at x1 and x2;
(ii) H(x, p) is strictly convex and superlinear in p, H(x, p) ≡ H(x, −p),

max
x∈S1

H(x,0) = 0

and the maximum is achieved at x1 and x2, and the Hessian matrix of H is negative definite 
at (x1, 0) and (x2, 0) ∈ T ∗S1;

(iii) for all x ∈ S1, let γ : (−∞, 0] → S1 with γ (0) = x be a calibrated curve, then the α-limit 
of γ is either x1 or x2.

By (ii), H(x, p) ≥ H(x, 0), where the equality holds if and only if p = 0. By the argument at the 
beginning of this section, it is direct to see the critical value c0 = 0. Now let c = 0. The contact 
Hamilton equations for �H

t |M0 are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ∂H

∂p
(x,p),

ṗ = −∂H

∂x
(x,p) − λ′(x)u − λ(x)p,

u̇ = ∂H

∂p
(x,p)p.

(4.3)

By (ii), u̇ ≥ 0 and the equality holds if and only if p = 0. By the second equation in (4.3), there 

is only one non-wandering point of �H

t |M0 over x1 (resp. x2)
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P1 = (x1,0,0) (resp. P2 = (x2,0,0))

Note that

L(x,0) = sup
p∈T ∗S1

−H(x,p) = − inf
p∈T ∗S1

H(x,p) = −H(x,0).

Similar to Step 1.3 above, we have v−(x1) = v−(x2) = 0 for each solution v−. Near the points 
P1 and P2, the linearised equation is

ẋ = ∂2H

∂x∂p
x + ∂2H

∂p2 p, ṗ = −∂2H

∂x2 x − ∂2H

∂x∂p
p, u̇ = 0.

By (ii), P1 and P2 are hyperbolic fixed points. By (iii) and u̇ ≥ 0, the solution is unique near x1
and x2. The remaining proof is similar to Step 2.2 above, we omit it for brevity.

5. Large time behavior of the solution of (CP)

Let us recall umax (resp. u+
min) be the maximal solution (resp. minimal forward weak KAM so-

lution) of (E0). These two solutions play important roles in characterizing the large time behavior 
of the solution of (CP).

5.1. Above the maximal solution

Let ϕ ≥ umax. Then T −
t ϕ ≥ umax. Combining with Lemma 3.2(1), T −

t ϕ(x) has a bound inde-
pendent of t . Then the pointwise limit

ū(x) := lim sup
t→+∞

T −
t ϕ(x)

exists.
Assume (	) holds. By Proposition 1.6, the family {T −

t ϕ(x)}t≥1 is equi-Lipschitz in x. We 
denote by κ the Lipschitz constant of T −

t ϕ(x) in x. Since

| sup
s≥t

T −
s ϕ(x) − sup

s≥t
T −

s ϕ(y)| ≤ sup
s≥t

|T −
s ϕ(x) − T −

s ϕ(y)| ≤ κd(x, y),

the limiting procedure

ū(x) = lim
t→+∞ sup

s≥t
T −

s ϕ(x)

is uniform in x. Thus, the function ū(x) is Lipschitz continuous. We assert that ū is a subsolution. 
If the assertion is true, by Proposition 3.5, limt→+∞ T −

t ū(x) exists, and it is a solution. Since 
T −

t ϕ ≥ umax, we have ū ≥ umax. Thus, limt→+∞ T −
t ū = umax. Based on Section 4.1, the lower 

half limit ϕ̌ = umax. By the definition of ϕ̌, we have

−
lim inf
t→+∞ Tt ϕ(x) ≥ ϕ̌(x) = umax.
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On the other hand,

lim sup
t→+∞

T −
t ϕ(x) = ū(x) ≤ lim

t→+∞T −
t ū(x) = umax(x).

It follows that limt→+∞ T −
t ϕ = umax uniformly on M .

It remains to prove ū is a subsolution. By Proposition 2.5, we only need to show T −
t ū is 

increasing in t .
We claim that for every ε > 0, there exists a constant s0 > 0 independent of x such that for 

any s ≥ s0,

T −
s ϕ(x) ≤ ū(x) + ε.

Fixing x ∈ M , by definition of lim sup, for every ε > 0, there is s0(x) > 0 such that for any 
s ≥ s0(x),

T −
s ϕ(x) ≤ ū(x) + ε

3
.

Taking r := ε
3κ

. For s ≥ s0(x), we have

T −
s ϕ(y) ≤ T −

s ϕ(x) + κd(x, y) ≤ ū(x) + ε

3
+ κd(x, y)

≤ ū(y) + ε

3
+ 2κd(x, y) ≤ ū(y) + ε, ∀y ∈ Br(x).

Since M is compact, there are finite points xi ∈ M such that for each y ∈ M , there is a point xi

such that y ∈ Br(xi). Let s0 := maxi s0(xi) and the claim is proved.
By Proposition 2.2, for each t > 0 we have

T −
t (T −

s ϕ(x)) ≤ T −
t (ū(x) + ε) ≤ T −

t ū(x) + εeλ0t ,

where λ0 := ‖λ(x)‖∞ > 0. Taking the limit s → +∞, we have

ū(x) = lim sup
s→+∞

T −
t (T −

s ϕ(x)) ≤ T −
t ū(x) + εeλ0t .

Letting ε → 0+, we get ū(x) ≤ T −
t ū(x), which means T −

t ū(x) is increasing in t .

5.2. Below the minimal solution

We have proved that for each ϕ ≥ umax, limt→+∞ T −
t ϕ = umax uniformly on M . Combining 

with Proposition 2.4 and Proposition 2.7, one has

Lemma 5.1. Let ϕ ∈ C(M). If ϕ ≤ u+
min, then limt→+∞ T +

t ϕ = u+
min uniformly on M .

Lemma 5.2. Let ϕ ∈ C(M) and there is a point x0 ∈ M such that ϕ(x0) < u+
min(x0), then T −

t ϕ(x)
tends to −∞ uniformly on M as t → +∞.
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Proof. We first prove that minx∈M T −
t ϕ(x) tends to −∞ as t → +∞. We argue by contradic-

tion. Assume there is a constant K1 and a sequence {tn}n∈N such that T −
tn

ϕ ≥ K1. By Lemma 3.2, 
T −

tn
ϕ also has a upper bound independent of t . Thus, the function vn(x) := T −

tn
ϕ(x) is bounded 

continuous for each n. By Proposition 2.6, we have ϕ(x0) ≥ T +
tn

vn(x0). By Proposition 3.4, all 
subsolutions are uniformly bounded. Denote by K2 their lower bound. Let K ′ := min{K1, K2}, 
then T +

tn
vn ≥ T +

tn
K ′. By Lemma 3.2(2), T +

t K ′ has a lower bound independent of t . Since 
K ′ ≤ K2, T +

t K ′ is smaller than every forward weak KAM solution of (E0). By Lemma 5.1, 
limt→+∞ T +

t K ′ exists and it equals to u+
min. We conclude

u+
min(x0) ≤ lim sup

tn→+∞
T +

tn
vn(x0) ≤ ϕ(x0) < u+

min(x0),

which leads to a contradiction.
We then prove that T −

t ϕ(x) tends to −∞ uniformly as t → +∞. Let W(x) be the inverse 
function of x �→ xex . Taking 0 < η ≤ W(1)/λ0. We define K(t) := minx∈M T −

t ϕ(x), which 
tends to −∞ as t → +∞. We take an arbitrary x ∈ M . If T −

t+ηϕ(x) ≤ K(t), then the proof is 
finished. So we assume T −

t+ηϕ(x) > K(t). Let xt be the minimal point of T −
t ϕ. Taking a geodesic 

α : [0, η] → M with α(0) = xt , α(η) = x and constant speed ‖α̇‖ ≤ diam(M)/η. By continuity, 
there is σ ∈ [0, η) such that T −

t+σ ϕ(α(σ )) = K(t) and T −
t+sϕ(α(s)) > K(t) for all s ∈ (σ, η]. 

Then

T −
t+sϕ(α(s)) ≤ T −

t+σ ϕ(α(σ )) +
s∫

σ

[
L(α(τ), α̇(τ )) − λ(α(τ)) · T −

t+τ ϕ(α(τ)) + c

]
dτ

≤ K(t) +
s∫

σ

[
L(α(τ), α̇(τ )) − λ0K(t) + c

]
dτ + λ0

s∫
σ

[
T −

t+τ ϕ(α(τ)) − K(t)

]
dτ

≤ K(t) + C̄Lη − λ0ηK(t) + λ0

s∫
σ

[
T −

t+τ ϕ(α(τ)) − K(t)

]
dτ,

where

C̄L := max
x∈M,‖ẋ‖≤diam(M)/η

|L(x, ẋ) + c|

is finite for a fixed η by the assumption (	). By the Gronwall inequality, we have

T −
t+sϕ(α(s)) ≤ C̄Lηeλ0η + (1 − λ0ηeλ0η)K(t).

Since η ≤ W(1)/λ0, we have 1 − λ0ηeλ0η > 0. Taking s = η, we finally conclude that T −
t ϕ(x)

tends to −∞ as t → +∞. �

So far, we complete the proof of Theorem 2.

295



P. Ni and L. Wang Journal of Differential Equations 403 (2024) 272–307
5.3. Proof of Theorem 3

According to Proposition A.6, for c ≥ c0, (E0) has a Lipschitz subsolution. Let u0 be a subso-
lution of (E0) with c = c0. For c > c0, there holds

T +
t u0 < u0 < T −

t u0.

One can construct two different solutions u− and v− of (E0) from u0 by Proposition A.7. Pre-
cisely, we have

u− = lim
t→+∞T −

t u0, u+ = lim
t→+∞T +

t u0, v− = lim
t→+∞T −

t u+. (5.1)

It follows that u+ < u0 < u−.

Lemma 5.3. Let c > c0. For each α ∈ (0, 1] and each solution w− of (E0), the convex combina-
tion

uα := αu0 + (1 − α)w−

is a strict subsolution of (E0). In particular, we have T +
t uα < uα < T −

t uα .

Proof. Since u0 is a Lipschitz subsolution of (E0) with c = c0, we have

H(x,Du0(x)) + λ(x)u0(x) + (c − c0) ≤ c, a.e x ∈ M.

Since w− is a solution of (E0), we have

H(x,Dw−(x)) + λ(x)w−(x) = c, a.e. x ∈ M.

Therefore

αH(x,Du0(x)) + (1 − α)H(x,Dw−(x))

+ λ(x)

(
αu0(x) + (1 − α)w−(x)

)
+ α(c − c0) ≤ c, a.e. x ∈ M.

By the convexity of H(x, p) with respect to p, the Jensen’s inequality gives

H(x,Duα(x)) + λ(x)uα(x) ≤ (1 − α)c + αc0, a.e. x ∈ M.

Let ε0 := α(c − c0) > 0. Then

H(x,Duα(x)) + λ(x)uα(x) + ε0 ≤ c, a.e. x ∈ M.

By Lemma A.2, T +
t uα < uα < T −

t uα . �
Lemma 5.4. Let c > c0. Define u− and v− as in (5.1). Then u− is the maximal solution of (E0), 

and v− is the minimal solution of (E0).
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Proof. In the first step, we prove that there is no solution w− different from u− such that w− ≥
u−. Assume that there is such a solution w−. Since u0 < u− ≤ w−, there is α ∈ (0, 1) such that 
uα = αu0 + (1 − α)w− satisfies

min
x∈M

(u−(x) − uα(x)) = 0.

Let x0 ∈ M be the point at which the above minimum is attained. Then

T −
t uα ≤ T −

t u−.

By Lemma 5.3, we have T −
t uα(x0) > uα(x0) = u−(x0) = T −

t u−(x0), which leads to a contra-
diction.

We then turn to prove that u− is the maximal solution, that is, w− ≤ u− for all solutions w−. 
Assume that there is a solution w− such that

max
x∈M

(w−(x) − u−(x)) > 0.

Let y0 ∈ M be the point at which the above maximum is attained. Then the function ū(x) :=
max{u−(x), w−(x)} is a subsolution. By Proposition 3.5, we get a solution

w̄− := lim
t→+∞T −

t ū ≥ ū ≥ u−.

We also have

w̄−(y0) ≥ ū(y0) = w−(y0) > u−(y0).

Then w̄− is different from u− and w̄− ≥ u−. This contradicts what we got in the first step.
Similar to the argument above, we conclude that u+ is the minimal forward weak KAM 

solution of (E0). By Lemma 4.1, v− is the minimal solution of (E0). �
Let us recall u0 is a subsolution of (E0) with c = c0. For c > c0, there holds

T +
t u0 < u0 < T −

t u0.

By Proposition 2.2(1) and Proposition 2.6, we have

T −
t+su0 ≥ T −

t+s ◦ T +
t u0 = T −

s ◦ (T −
t ◦ T +

t u0) ≥ T −
s u0

for all t, s ≥ 0. Letting s → +∞, we have

lim
s→+∞T −

t+s ◦ T +
t u0 = umax, (5.2)

for each t > 0. Let ϕ ∈ C(M) satisfy u+
min < ϕ ≤ umax. Since u+

min = limt→+∞ T +
t u0 by 
Lemma 5.4, there is t0 > 0 such that T +
t0

u0 ≤ ϕ on M . Then we have
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T −
t0+s ◦ T +

t0
u0 ≤ T −

t0+sϕ ≤ umax.

Letting s → +∞ and by (5.2), we have

lim
t→+∞T −

t ϕ = umax.

Now we assume (	) holds. Then for each ϕ > u+
min, there is ϕ1 and ϕ2 such that

ϕ1 ≥ umax, u+
min < ϕ2 ≤ umax, ϕ2 ≤ ϕ ≤ ϕ1.

Then we have T −
t ϕ2 ≤ T −

t ϕ ≤ T −
t ϕ1. Since limt→+∞ T −

t ϕi = umax for i = 1, 2, we have

lim
t→+∞T −

t ϕ = umax.

The proof of Theorem 3 is now complete.
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Appendix A. Auxiliary results

A.1. Proof of Proposition 2.5

Lemma A.1. If ϕ is a Lipschitz subsolution of (B0), then ϕ ≺ L.

Proof. Without loss of generality, we assume M is an open set of Rn. In fact, for each absolutely 
continuous curve γ : [0, t] → M , we cover it by local coordinate charts. Clearly, there exists 
N ∈ N such that [0, t] = ∪N−1

i=0 [ti , ti+1] with t0 = 0, tN = t , such that γ |[ti ,ti+1] is contained in an 
open subset of Rn.

By [9, Proposition 2.4], there is a function q ∈ L∞([0, t], Rn) such that for almost all s ∈
[0, t], we have

d

ds
ϕ(γ (s)) = q(s) · γ̇ (s),

and the vector q(s) belongs to ∂cϕ(γ (s)). Here we recall the definition of the Clarke’s generalized 
gradient

∂cϕ(x) :=
⋂

co{Dϕ(y) : y ∈ B(x, r), and ϕ is differentiable at y},

r>0
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where co stands for the closure of the convex combination. Since ϕ is a Lipschitz subsolution of 
(B0), if ϕ is differentiable at y, we have

H(y,ϕ(y),Dϕ(y)) ≤ 0.

By the convexity of H with respect to p, and the definition of ∂cϕ(x), we have

H(x,ϕ(x), q) ≤ 0, ∀q ∈ ∂cϕ(x).

We conclude that

ϕ(γ (t)) − ϕ(γ (0)) =
t∫

0

d

ds
ϕ(γ (s))ds =

t∫
0

q(s) · γ̇ (s)ds

≤
t∫

0

[
L(γ (s), ϕ(γ (s)), γ̇ (s)) + H(γ (s),ϕ(γ (s)), q(s))

]
ds

≤
t∫

0

L(γ (s), ϕ(γ (s)), γ̇ (s))ds,

which implies ϕ ≺ L. �
Lemma A.2. If ϕ ≺ L, then for each t ≥ 0, we have T −

t ϕ ≥ ϕ ≥ T +
t ϕ. Moreover, if there exists 

ε0 > 0 such that for a.e. x ∈ M ,

H(x,u,Du) + ε0 ≤ 0,

then

T +
t ϕ < ϕ < T −

t ϕ.

Proof. In the following, we only prove T −
t ϕ ≥ ϕ for each t ≥ 0, since the proof of T +

t ϕ ≤ ϕ

is similar. By contradiction, we assume there exists x0 ∈ M such that ϕ(x0) > T −
t ϕ(x0). Let 

γ : [0, t] → M be a minimizer of T −
t ϕ with γ (t) = x0, i.e.

T −
t ϕ(x) = ϕ(γ (0)) +

t∫
0

L(γ (τ), T −
τ ϕ(γ (τ )), γ̇ (τ ))dτ. (A.1)

Let F(τ) := ϕ(γ (τ)) − T −
τ ϕ(γ (τ )). Since F(t) > 0 and F(0) = 0, then one can find s0 ∈ [0, t)

such that F(s0) = 0 and F(s) > 0 for s ∈ (s0, t]. A direct calculation shows

F(s) ≤ �

s∫
F(τ)dτ,
s0
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which implies F(s) ≤ 0 for s ∈ (s0, t] from the Gronwall inequality. It contradicts F(t) > 0.
Next, we assume there exists ε0 > 0 such that for a.e. x ∈ M ,

H(x,u,Du) + ε0 ≤ 0.

Let us denote

L̃(x,u, ẋ) := L(x,u, ẋ) − ε0,

and let T̃ −
t be the Lax-Oleinik semigroup associated to L̃. By a similar argument above, we have 

T̃ −
t ϕ ≥ ϕ and T̃ +

t ϕ ≤ ϕ. Note that L̃ < L. Using a similar argument as [17, Proposition 3.1], 
T̃ −

t ϕ < T −
t ϕ and T̃ +

t ϕ > T +
t ϕ for each t > 0. Therefore, T −

t ϕ > ϕ and T +
t ϕ < ϕ for each t > 0. 

This completes the proof. �
Lemma A.3. If for each t > 0, T −

t ϕ ≥ ϕ, then ϕ is a Lipschitz subsolution of (E0).

Proof. Fix T > 0, by assumption we have T −
t ϕ ≥ ϕ for each t ∈ [0, T ]. By [14], there is 

a constant R0 > 0 depending on T and ‖Dϕ‖∞, such that ‖DT −
t ϕ(x)‖∞ ≤ R0. Let R :=

max{R0, ‖Dϕ‖∞}, we make a modification

HR(x,u,p) := H(x,u,p) + max{‖p‖2 − R2,0}.

Then T −
t ϕ is also the solution of (A0) with H replaced by HR . One can prove that the Lagrangian 

LR corresponding to HR is continuous. By the uniqueness of the solution of (A0), we have 
T −

t ϕ = T R
t ϕ, where T R

t ϕ is defined by (2.1) with L replaced by LR .
Let ϕ be differentiable at x ∈ M . For each v ∈ TxM , there is a C1 curve γ : [0, T ] → M with 

γ (0) = x and γ̇ (0) = v. By assumption for each t ∈ [0, T ], we have

ϕ(γ (t)) ≤ T −
t ϕ(γ (t)) = T R

t ϕ(γ (t)) ≤ ϕ(x) +
t∫

0

LR(γ (s), T R
s ϕ(γ (s)), γ̇ (s))ds.

Dividing by t and let t tend to zero, using the continuity of γ , LR and T R
t ϕ(x). We get

Dϕ(x) · v ≤ LR(x,ϕ(x), v).

Since v is arbitrary, we have

HR(x,ϕ(x),Dϕ(x)) = sup
v∈TxM

[
Dϕ(x) · v − LR(x,ϕ(x), v)

]
≤ 0.

Therefore, ϕ is a Lipschitz subsolution of

HR(x,u(x),Du(x)) = 0.
By the definition of HR , ϕ is also a Lipschitz subsolution of (B0). �
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A.2. Proof of Proposition 2.6

We only prove ϕ ≤ T −
t ◦ T +

t ϕ, the other side is similar. We argue by a contradiction. Assume 
that there is x ∈ M and t > 0 such that

T −
t ◦ T +

t ϕ(x) < ϕ(x).

Let γ : [0, t] → M with γ (t) = x be a minimizer of T −
t ◦ T +

t ϕ(x), and define

F(s) := T +
t−sϕ(γ (s)) − T −

s ◦ T +
t ϕ(γ (s)).

Then F(0) = 0 and F(t) > 0. By continuity, there is σ ∈ [0, t) such that F(σ) = 0 and F(τ) > 0
for all τ ∈ (σ, t]. By definition, for s ∈ (σ, t] we have

T −
s ◦ T +

t ϕ(γ (s)) = T −
σ ◦ T +

t ϕ(γ (σ )) +
s∫

σ

L(γ (τ), T −
τ ◦ T +

t ϕ(γ (τ )), γ̇ (τ ))dτ

= T +
t−σ ϕ(γ (σ )) +

s∫
σ

L(γ (τ), T −
τ ◦ T +

t ϕ(γ (τ )), γ̇ (τ ))dτ

≥ T +
t−sϕ(γ (s)) −

s∫
σ

L(γ (τ), T +
t−τ ϕ(γ (τ )), γ̇ (τ ))dτ

+
s∫

σ

L(γ (τ), T −
τ ◦ T +

t ϕ(γ (τ )), γ̇ (τ ))dτ

≥ T +
t−sϕ(γ (s)) − �

s∫
σ

F (τ)dτ,

which implies

F(s) ≤ �

s∫
σ

F (τ)dτ.

By the Gronwall inequality, we have F(s) ≡ 0 for s ∈ [σ, t], which contradicts F(t) > 0.

A.3. Proof of Proposition 1.2

A.3.1. c0 and subsolutions
Inspired by [4], we denote

{ }

c0 := inf

u∈C∞(M)
sup
x∈M

H(x,Du) + λ(x)u .
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Proposition A.4. c0 is finite.

Proof. Choose u(x) ≡ 0, then by definition,

c0 ≤ sup
x∈M

H(x,0) < +∞.

Let us recall

e0 := min
(x,p)∈T ∗M

H(x,p) > −∞.

By the assumption (±), there exists x0 ∈ M such that λ(x0) = 0. Thus for each u ∈ C∞(M),

c0 = inf
u∈C∞(M)

sup
x∈M

{
H(x,Du(x)) + λ(x)u(x)

}

� inf
u∈C∞(M)

{
H(x0,Du(x0)) + λ(x0)u(x0)

}
= inf

u∈C∞(M)
H(x0,Du(x0)) � e0.

This means c0 is finite. �
Proposition A.5. For c < c0, (E0) has no continuous subsolutions.

Proof. By contradiction, we assume for c < c0, (E0) admits a continuous subsolution u : M →
R. By the definition of the subsolution, for any p ∈ D+u(x),

H(x,p) ≤ c − λ(x)u(x) ≤ c + λ0‖u‖∞.

Combining (CER), one can conclude that u is Lipschitz continuous (see [8, Proposition 1.14] for 
more details). By [6, Lemma 2.2], for all ε > 0, there exists uε ∈ C∞(M) such that ‖u −uε‖∞ <

ε and for all x ∈ M ,

H(x,Duε(x)) + λ(x)u(x) ≤ c + ε.

We choose ε = 1
2(1+λ0)

(c0 − c) > 0, then

H(x,Duε(x)) + λ(x)uε(x)

�H(x,Duε(x)) + λ(x)u(x) + λ0‖u − uε‖∞
� c + (1 + λ0)ε < c0,
this contradicts the definition of c0. �
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A.3.2. Existence of subsolutions and solutions
Let us recall that T ±

t denote the Lax-Oleinik semigroups associated to

L(x, ẋ) − λ(x)u(x) + c.

Proposition A.6. For c ≥ c0, (E0) has a Lipschitz subsolution. Let u0 be a subsolution of (E0)
with c = c0. For c > c0, there holds

T +
t u0 < u0 < T −

t u0.

Proof. By the definition of c0, there exists un ∈ C∞(M) such that for all x ∈ M ,

H(x,Dun(x)) + λ(x)un(x) � c0 + 1

n
. (A.2)

Namely, un is a subsolution of

H(x,Du) + λ(x)u = c0 + 1.

By Proposition 3.4, {un}n≥1 is equi-bounded and equi-Lipschitz continuous. Then by the 
Ascoli-Arzelà theorem, it contains a subsequence {unk

}k∈N uniformly converging on M to some 
u0 ∈ Lip(M). By the stability of subsolutions (see [2, Theorem 5.2.5]), u0 is a subsolution of

H(x,Du) + λ(x)u = c0.

Moreover, for c > c0 and a.e. x ∈ M , we have

H(x,Du0) + λ(x)u0 + (c − c0) ≤ c.

By Lemma A.2,

T +
t u0 < u0 < T −

t u0.

This completes the proof. �
Combining Propositions A.5, A.6 and 3.5, we conclude that (E0) has a solution if and only if 

c ≥ c0. It remains to prove the following result.

Proposition A.7. (E0) has at least two solutions for c > c0.

Proof. By Proposition A.6, if c > c0, there exists a strict Lipschitz subsolution u0 of (E0). Based 
on Proposition 2.5, for t > 0,

T −
t u0(x) > u0(x), T +

t u0(x) < u0(x). (A.3)
Denote
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u− := lim
t→+∞T −

t u0(x), u+ := lim
t→+∞T +

t u0(x), (A.4)

and

v− := lim
t→+∞T −

t u+(x). (A.5)

By Proposition 3.5, u− and v− are solutions of (E0).
It remains to verify u− �= v−. By contradiction, we assume u− ≡ v− on M . In view of (A.5), 

we have

u− = lim
t→+∞T −

t u+(x). (A.6)

Based on (A.6), it follows from Proposition 2.9 that

Iu+ := {x ∈ M : u−(x) = u+(x)} �= ∅. (A.7)

On the other hand, from (A.3) and (A.4), it follows that for any x ∈ M ,

u+(x) < u0(x) < u−(x), (A.8)

which implies

Iu+ = ∅.

This contradicts (A.7). �
A.4. Proof of Proposition 1.6

Assume that H(x, p) is continuous and satisfies the condition (	). Then the associated La-
grangian L(x, ẋ) satisfies

(CL): L(x, ẋ) and ∂L
∂ẋ

(x, ẋ) are continuous;
(CON): L(x, ẋ) is convex in ẋ, for any x ∈ M ;
(SL): there is a superlinear function η(r) such that L(x, ẋ) ≥ η(‖ẋ‖).

With a slight modification, [1, Theorem 2.2] implies

Lemma A.8. (Erdmann condition). For each (x, t) ∈ M × (0, +∞), let γ : [0, t] → M be a 
minimizer of T −

t ϕ(x). Set u1(s) := T −
s ϕ(γ (s)) with s ∈ [0, t], and

E0(s) := ∂L

∂ẋ
(γ (s), γ̇ (s)) · γ̇ (s) − L(γ (s), γ̇ (s)),

then

∫ s
E(s) := e 0 λ(γ (r))dr [E0(s) + λ(γ (s))u1(s)]
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satisfies Ė(s) = 0 a.e on [0, t].

Based on Lemma A.8, we have

Theorem A.9. The function (x, t) �→ T −
t ϕ(x) is locally Lipschitz on M × (0, +∞). More pre-

cisely, given two positive constants δ and T with δ < T . For each ϕ ∈ C(M) and t ∈ [δ, T ], the 
Lipschitz constant of T −

t ϕ(x) depends only on ‖ϕ‖∞, δ and T .

Proof. Step 1. Lipschitz estimate of minimizers. Given (x, t) ∈ M × [δ, T ]. In the following, 
we denote by γ : [0, t] → M a minimizer of T −

t ϕ(x). We focus on the Lipschitz regularity 
of the curve γ . Note that T −

t (−‖ϕ‖∞) ≤ T −
t ϕ ≤ T −

t ‖ϕ‖∞, T −
t ϕ is bounded by a constant K

depending only on ‖ϕ‖∞ and T . We then have

K ≥ T −
t ϕ(x) = ϕ(γ (0)) +

t∫
0

[
L(γ (s), γ̇ (s)) − λ(γ (s))T −

s ϕ(γ (s))

]
ds

≥ −‖ϕ‖∞ − λ0KT +
t∫

0

L(γ (s), γ̇ (s))ds.

By (SL), there is a constant D such that L(γ (s), γ̇ (s)) ≥ ‖γ̇ (s)‖ + D, then we have

K + (λ0K + |D|)T + ‖ϕ‖∞ ≥
t∫

0

‖γ̇ (s)‖ds.

Thus, there is s0 ∈ [0, t] such that ‖γ̇ (s0)‖ is bounded by a constant depending only on ‖ϕ‖∞, δ
and T . Recall

E(s) := e
∫ t

0 λ(γ (r))dr [E0(s) + λ(γ (s))u1(s)].

By Lemma A.8, Ė(s) = 0 a.e. on [0, t]. It follows that

E0(s) ≤ eλT (|E0(s0)| + λ0K) + λ0K := F1.

By (CON) we have

L(γ (s),
γ̇ (s)

1 + ‖γ̇ (s)‖ ) − L(γ (s), γ̇ (s)) ≥ (
1

1 + ‖γ̇ (s)‖ − 1)
∂L

∂ẋ
(γ (s), γ̇ (s)) · γ̇ (s)

≥ (
1

1 + ‖γ̇ (s)‖ − 1)(F1 + L(γ (s), γ̇ (s))).

We denote by K3 the bound of L(x, ẋ) for ‖ẋ‖ ≤ 1. Then we have
L(γ (s), γ̇ (s)) ≤ 2K3 + F1.
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By (SL), ‖γ̇ (s)‖ is bounded by a constant depending only on ‖ϕ‖∞, δ and T .
Step 2. Lipschitz estimate of (x, t) �→ T −

t ϕ(x). We first show that u(x, t) := T −
t ϕ(x) is locally 

Lipschitz in x. For any r > 0 with 2r < δ, given (x0, t) ∈ M ×[δ, T ] and x, x′ ∈ B(x0, r), denote 
by d0 := d(x, x′) ≤ 2r < δ the Riemannian distance between x and x′, we have

u(x′, t) − u(x, t) ≤
t∫

t−d0

[
L(α(s), α̇(s)) − λ(α(s))u(α(s), s)

]
ds

−
t∫

t−d0

[
L(γ (s), γ̇ (s)) − λ(γ (s))u(γ (s), s)

]
ds,

where γ (s) is a minimizer of u(x, t) and α : [t −d0, t] → M is a geodesic satisfying α(t −d0) =
γ (t − d0) and α(t) = x′ with constant speed. By Step 1, the bound of ‖γ̇ (s)‖ depends only on 
‖ϕ‖∞, δ and T . Since

‖α̇(s)‖ ≤ d(γ (t − d0), x
′)

d0
≤ d(γ (t − d0), x)

d0
+ 1,

and d(γ (t −d0), x) ≤ ∫ t

t−d0
‖γ̇ (s)‖ds, the bound of ‖α̇(s)‖ also depends only on ‖ϕ‖∞, δ and T . 

Exchanging the role of (x, t) and (x′, t), one obtains that |u(x, t) −u(x′, t)| ≤ J1d(x, x′), where 
J1 depends only on ‖ϕ‖∞, δ and T . By the compactness of M , we conclude that for t ∈ [δ, T ], 
the value function u(·, t) is Lipschitz on M .

We are now going to show the locally Lipschitz continuity of u(x, t) in t . Given t and t ′ with 
δ ≤ t < t ′ ≤ T . Let γ : [0, t ′] → M be a minimizer of u(x, t ′), then

u(x, t ′) − u(x, t) = u(γ (t), t) − u(x, t) +
t ′∫

t

[
L(γ (s), γ̇ (s)) − λ(γ (s))u(γ (s), s)

]
ds,

where the bound of ‖γ̇ (s)‖ depends only on ‖ϕ‖∞, δ and T . We have shown that for t ≥ δ, the 
following holds

u(γ (t), t) − u(x, t) ≤ J1d(γ (t), x) ≤ J1

t ′∫
t

‖γ̇ (s)‖ds ≤ J2(t
′ − t).

Thus, u(x, t ′) − u(x, t) ≤ J3(t
′ − t), where J3 depends only on ‖ϕ‖∞, δ and T . The condition 

t ′ < t is similar. We conclude the Lipschitz continuity of u(x, ·) on [δ, T ]. �
Let ‖T −

t ϕ(x)‖∞ ≤ K for all t ≥ 0, with the bound K independent of t . Note that T −
t ϕ(x) =

T −
1 ◦ T −

t−1ϕ(x). Fix δ = 1/2 and T = 1 in Theorem A.9. It follows that the Lipschitz constant 
of T −

1 ◦ T −
t−1ϕ(x) depends only on K , which is independent of t . This completes the proof of 
Proposition 1.6.
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