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Abstract

We consider the Hamilton-Jacobi equation

H(x,Du)+A(x)u=c, xeM,

where M is a connected, closed and smooth Riemannian manifold. The functions H (x, p) and A(x) are con-
tinuous. H (x, p) is convex, coercive with respect to p, and A(x) changes the signs. The first breakthrough
to this model was achieved by Jin-Yan-Zhao [11] under the Tonelli conditions. In this paper, we consider
more detailed structure of the viscosity solution set and large time behavior of the viscosity solution on the
Cauchy problem. To the best of our knowledge, it is the first detailed description of the large time behavior
of the HJ equations with non-monotone dependence on the unknown function.
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1. Introduction and main results

Let H:T*M x R — R be a contact Hamiltonian. It turns out that the dependence of H on
the contact variable u plays a crucial role in exploiting the dynamics generated by H. By using
previous dynamical approaches, some progress on viscosity solutions of Hamilton-Jacobi (HJ)
equations have been achieved [16,17,19]. In particular, based on the works mentioned before, the
structure of the set of solutions can be sketched if H is uniformly Lipschitz in u. Shortly after
[17] occurred, [12] generalized the results to ergodic problems by using PDE approaches. More
recently, for a class of HJ equations with non-monotone dependence on u, the first breakthrough
was achieved by Jin-Yan-Zhao [11] under the Tonelli conditions. In that work, they provided a
description of the solution set of the stationary equation (formulated as (E() below) and revealed
a bifurcation phenomenon with respect to the value ¢ in the right hand side, which opened a
way to exploit further properties of viscosity solutions beyond well-posedness for HJ equations
with non-monotone dependence on . The main results in this paper are motivated by [11]. The
present paper further discusses the large time behavior of the non-monotone model considered in
[11]. To the best of our knowledge, Theorems 2 and 3 below are the first detailed description of
the large time behavior of the HJ equations non-monotone in the unknown function. For another
result on this topic, one can refer to [10, Theorem 6.5 (3)].

Let us consider the stationary equation:

Hx,Du)+A(x)u=c, xeM. (Eo)

Throughout this paper, we assume M is a closed, connected and smooth Riemannian manifold.
D denotes the spacial gradient with respect to x € M. Denote by TM and T*M the tangent
bundle and cotangent bundle of M respectively. Let H : T*M — R satisfy

(C): H(x, p) is continuous;

(CON): H(x, p) is convex in p, for any x € M;

(CER): H(x, p) is coercive in p, i.e. limj |, 400 H(x, p) = +00, where | - || denotes the
norms induced by g on both TM and T*M.

Correspondingly, one has the Lagrangian associated to H:

L(x,x):= sup {{x,p)y — H(x, p)},
peTM
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where (-, ), represents the canonical pairing between 7, M and 7,°M. The Lagrangian L (x, x)
satisfies the following properties:

(LSC): L(x,x) is lower semicontinuous in x, and continuous on the interior of its domain
dom(L) :={(x,x) e TM: L(x,x) < +o00};
(CON): L(x,x) is convex in x, for any x € M.

We also assume A(x) is continuous and satisfies
(£): there exist x1, xp € M such that A(x1) > 0 and A(x2) <O.

Throughout this paper, we define

Ao = 1A () [loo > 0, (1.1)

where || - || stands for the supremum norm of the functions on their domains. Based on this
model, we revealed some different phenomena from the cases with monotone dependence on u
can be revealed.

Remark 1.1. The model (E() has been considered in [22]. In that paper, the function A(x) is non-
negative and positive on the projected Aubry set of H (x, p). In this case, the solution of (E) is
unique. The asymptotic behavior of the solution of (E) is also studied in [22] when Ao — 0.
When Ag — 0" and the assumption (&) holds, the family of solutions of (E¢) may diverge, one
can refer to [13] for an example.

In [14], the well-posedness of the Lax-Oleinik semigroup was verified for contact HJ equa-
tions under very mild conditions. By virtue of that, we generalize the results in [11] to the cases
from the Tonelli conditions to the assumptions (C), (CON) and (CER) above. Henceforth, for
simplicity of notation, we omit the word “viscosity”, if it is not necessary to be mentioned.

Proposition 1.2 (Generalization of [11]). Let

co:= inf sup {H(x,Du)+k(x)u}. (1.2)
ueC®(M) yem
Then cy is finite. Given ¢ > co, the || - || y1.00-norm of all subsolutions of (Ey) is bounded. More-

over,

(1) (Eo) has a solution if and only if ¢ > cop;
(2) if ¢ > co, then (Ey) has at least two solutions.

The definition of c¢g is inspired by [4]. In light of that, ¢ is called the critical value. Now we
consider the following case with a more general dependence of H in u

H(x,u(x), Du(x))=c, xeM,
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where the Hamiltonian H (x, u, p) is continuous, superlinear in p and uniformly Lipschitz in u.
It was pointed out in [12] that there is a constant ¢ € R such that the above equation has viscosity
solutions. Here we give some examples on the set € of all such ¢, which reveal the essential
differences between the monotone cases and the non-monotone cases:

e for classical Tonelli Hamiltonian H (x, p), the set € = {co}. The number cq is called the
Maiié critical value;

e for the discounted Hamilton-Jacobi equation, i.e., the Hamiltonian is of the form Au +
H (x, p) with A > 0, the set € =R, see for example [6];

e for the model (Ey) considered here, the set € = [cg, +00). Here we note that the non-
emptiness of € is proved under (CER) instead of H (x, p) is superlinear in p. In view of
the existence result in [12], it means Proposition 1.2 is a non-trivial generalization of [11];

e for the Hamiltonian periodically depending on u, i.e., H(x,u + 1, p) = H(x, u, p), the set
¢ is a bounded closed interval, see [15].

Different from the Tonelli case considered in [11], some new ingredients are needed for a
priori estimates of subsolutions under the assumptions (C), (CON) and (CER). Those estimates
will be provided in Section 3. The remaining parts of the proof of Proposition 1.2 are similar to
the one in [11]. We postpone it to Appendix A.3 for consistency.

Motivated by Proposition 1.2, we are devoted to exploiting more detailed information of this
model. First of all, we obtain

Theorem 1. Let ¢ > c¢q. There exist the maximal element um,x and the minimal element upi, in
the set of solutions of (E).

Remark 1.3. The viscosity solutions are equivalent to backward weak KAM solutions in our set-
ting (see [14, Proposition D.4]). In terms of the correspondence between backward and forward
weak KAM solutions (see Proposition 2.8(3) below), it follows from Theorem 1 that there exist
the maximal and minimal forward weak KAM solutions of (E(). We denote M;;in (resp. u,,) the
minimal (resp. maximal) froward weak KAM solution of (E(). One can refer to Proposition 2.1
and (T-) below for the definition of the backward semigroup 7, and the forward semigroup 7;" .

By Proposition 2.8(3)(4), there hold

+

min

+

U <tmin= lim T u_.,

lim T u =ul < Umax.
t—+o00 f—>foo0 [ Mmax max — “max

Let S_ (resp. S4) be the set of all backward (resp. forward) weak KAM solutions. Given
u4 € Si, if

u_= lim T, uy, uqp= lim Tfu_,
—>0o0 —0o0

then u_ (resp. u4) is called a conjugated backward (resp. forward) weak KAM solution. See
Fig. 1 for a rough description of structure of the solution set of (E() in general cases, where
T = im0 777, and P (resp. P+ ) denotes the set of all conjugated backward (resp. forward)
weak KAM solutions. For further statement on conjugated weak KAM solutions, one can refer
to [10, Theorem 6.5 and Theorem 7.1].

By Proposition 1.2(2), (E() has at least two solutions if ¢ > cg. Then a natural question is to
figure out what happens if ¢ = ¢¢. In [11], Jin, Yan and Zhao considered the following example:
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umax

+

min

U

Fig. 1. The structure of the solution set of (E).

Fig. 2. Certain solutions of (1.3) with ¢ =0.
Example 1.4.

|u/(x)|2+sinx~u(x)=c, xes! ~[0,2m), (1.3)
where S! denotes a flat circle with a fundamental domain [0, 27).
It was shown that cp = 0 and there are uncountably many solutions of (1.3) in the critical case.
A rough picture of certain solutions is given by Fig. 2. See [1 1, Theorem 3.5] for more details.

As a complement, we consider

Example 1.5.

1
§|u/(x)|2 +sinx-u(x) +cos2x —1=¢, xeS!'~[0,27). (1.4)

We will prove that the critical value is also ¢y = 0, but (1.4) admits a unique solution in the
critical case. A rough picture of the solution is given by Fig. 3. See Remark 4.2 below for certain
generalization of Example 1.5. Those two examples above show various possibilities about the
solution set of (E() in the critical case.
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Fig. 3. The unique solution of (1.4) with ¢ =0.

In the second part, we consider the evolutionary equation:

oru(x,t)+ H(x, Du(x,t)) + A\(x)u(x,t)=c, (x,1)e M x (0,4+00).
ux,0)=9¢kx), xeM,

(CP)

where ¢ € C(M). It is well known that the viscosity solution of (CP) is unique (see [10, Corollary
3.2] for instance). By [14, Theorem 1], this solution can be represented by u(x, t) := 7, ¢(x),
where 7, : C(M) — C(M) is defined implicitly by

t

Tz_sv(X)=y(itr)1£x (0(1/(0))+/[L(V(f),?(f))—)»(J/(T))Tr_w(y(f))JrC]dr . (1)
0

where the infimum is taken among absolutely continuous curves y : [0, t] — M with y (t) = x.
In order to obtain equi-Lipschitz continuity of {7, ¢};>s for a given § > 0, we have to
strengthen the assumptions on H from (CON), (CER) to the following:

(x) H(x, p) is strictly convex in p for any x € M, and there is a superlinear function 6 :
[0, +00) — [0, +00) such that H (x, p) = 6(l| pD).

Under the assumption (%), the equi-Lipschitz continuity of {7, ¢};>5 follows from the locally
Lipschitz property and boundedness of 7, ¢ on M x (0, 4-00). From the weak KAM point of
view, that kind of locally Lipschitz property can be verified by a standard procedure once we
have the Lipschitz regularity of minimizers of 7,” ¢(x) (see [7, Lemma 4.6.3]). However, H is
only supposed to be continuous in our setting. Then one can not use the method of characteristics
to improve regularity of these minimizers. Following [1], we will deal with that issue by using
the method of energy estimates. A key ingredient of that method is to establish the Erdmann
condition for a non-smooth energy function. More precisely, we obtain the following result,
whose proof is given in Appendix A.4.

Proposition 1.6. Assume (x) holds. If T,” ¢(x) has a bound independent of t, then the family
{T,” ¢}s>s is equi-Lipschitz continuous, where 8 is an arbitrarily positive constant.

Let us recall uy,x denotes the maximal solution of (E(), and u;in denotes its minimal froward
weak KAM solution. By Remark 1.3, u:ﬁn < Umax on M. Both of them play important roles in
characterizing the large time behavior of the solution of (CP). By assuming (x) holds, we obtain
the following two results.
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Theorem 2. Let u(x, t) be the solution of (CP) with ¢ > cq. Then

(1) if the initial data ¢ > umax, then u(x,t) converges 10 Umax uniformly on M as t — +00;
(2) if there is a point xg € M such that ¢(xo) < u. (xo), then u(x,t) tends to —oo uniformly
on M ast — +o0.

min

Theorem 3. Let u(x,t) be the solution of (CP) with ¢ > co. If the initial data ¢ > ul. | then

u(x,t) converges to umax uniformly on M as t — +oo.

min’

if there exists xg € M such that ¢(xg) = ul (xp), then u(x, 1) may

min’ min

Remark 1.7. For ¢ > ut
not converge to Umax-

e In Example 1.4 with ¢ = ¢, for each solution v of (1.3), it is easy to construct an initial data
o satisfying ¢ >0 > umm and

(xeM|px)=ul (x)}#0

min

such that u(x, t) converges to v uniformly on M. In fact, one can take ¢ = v for instance.
e For Example 1.4 with ¢ =1 > ¢g, by [11, Theorem 3.14], umin = sinx 7# umax and

{x € M | umin(x) = ugy, (X)) # 0.

min

Then one can take ¢ = sinx such that u(x, t) converges to umpi, uniformly on M.
e More exotically, u(x, t) may converge (up to a subsequence) uniformly to a nontrivial time
periodic solution of

oru(x,t) + H(x, Du(x,t)) + A(x)u(x,t) =c.

Inspired by [21, Example 5.1] and [20, Theorem 1.5], we consider evolutionary the HJ equa-
tion:

1 1
oru(x,t) + §|Du(x, t)|2 + Du(x,t) + (SinZJTX — E) u(x,1)=0,

(CP,)
u(x,0)=¢x), xeS'=[0,1),
and its associated stationary equation:
1 2 ) 1
Ele + Du + sm27rx—5 u=~0. (Se)

It is clear ug = 0 is a solution of (S,). According to [21, Lemma 2.2(1)], there exists a strict
subsolution v(x) with v > 0 on S!. It implies the critical Value (defined by (1.2)) ¢g < 0.
By Lemma 5.4 below, umax = limy 4007, v > v > 0 and umm = lim;— 400 Tt+v. Since
V> ug = 0 we get T+v > T+uo =0. Then u+in > 0. Since up = 0 is a classical solution
of (S.), ul. <up=0. We conclude that u = 0. Now let ¢ > 0 be a non-vanishing initial

min —

data ¢ > 0 satisfying
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fxeS! [px)=0}#0.

Similar to [20, Theorem 1.5], we can prove that wy(x, 1) := lim, . 1~ T, ;¢ exists for n €
N. In light of [21, Theorem 1.4], wy, (x, ¢) is a nontrivial time periodic solution of

1 1
oru(x,t) + ElDu(x, t)|2 + Du(x,t) + (sin27rx — 5) u(x,t)=0.

Remark 1.8. Now we recall the previous results on the large time behavior of the HJ equations
monotone in the unknown function. Consider the evolutionary equation:

oru(x,t)+ H(x,u(x,t), Du(x,t)) =0, (x,t)e M x (0,4+00).
ux,0)=¢kx), xeM,

(Ao)

and the stationary equation:
H(x,u(x), Du(x)) =0 (Bo)

(a) When the Hamiltonian is increasing in the unknown function, according to [16, Theorem
1.4], the solution of (A() uniformly converges to a solution of (Bg) as t — o0 for each
initial data @ (x).

(b) When the Hamiltonian is strictly decreasing in the unknown function, according to [19,
Theorem 2], if ¢ > u, then the solution of (A() uniformly converges to +00 as t — +00.
If there is a point x¢ such that ¢ (xg) < u4 (xp), then the solution of (A() uniformly converges
to —oo as t — +00. Here u is the unique forward weak KAM solution of (B).

From the results above, we can see that the non-monotone model (CP) has both characteristics
of Case (a) and Case (b).

The rest of this paper is organized as follows. Section 2 gives some preliminaries on T,
weak KAM solutions and Aubry sets. In Section 3, a priori estimates on subsolutions of (Eg)
are established. The proof of Theorem | and a detailed analysis of Example 1.5 are given in
Section 4. Theorem 2 and Theorem 3 are proved in Section 5. For the sake of completeness,
some auxiliary results are proved in Appendix A.

2. Preliminaries

In this part, we collect some facts on T,i, weak KAM solutions and Aubry sets. These facts
hold under more general assumptions on the dependence of u. We denote by (x, u#, p) a point in
T*M x R, where (x, p) e T*M andu € R.Let H : T*M x R — R be a continuous Hamiltonian
satisfying

(CON): H(x,u, p)isconvex in p, for any (x,u) € M x R;

(CER): H(x,u, p)is coercive in p, i.e. limp|, oo (infrep H(x,0, p)) = +o00;

(LIP): H(x,u, p) is Lipschitz in u, uniformly with respect to (x, p), i.e., there exists ® > 0
such that |H (x, u, p) — H(x, v, p)| < Olu —v|, forall (x, p) € T*M and all u, v € R.
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Correspondingly, one has the Lagrangian associated to H:

L(x,u,x):= sup {(x,p)x — H(x,u,p)}.
peTM

Due to the absence of superlinearity of H, the corresponding Lagrangian L may take the value
+00. Define

dom(L) :={(x,x,u) e TM xR | L(x, u, x) < +4o00}.

By the Lipschitz dependence of L in u, we have (see [14, Remark 1.2])

dom(L) ={(x,x)e TM | L(x,0,x) < +o00} x R.
Then L(x, u, x) satisfies the following properties:

(LSC): L(x,u, x) is lower semicontinuous, and continuous on the interior of dom(L);

(CON): L(x,u,x) isconvex in x, for any (x,u) € M x R;

(LIP): L(x,u,x) is Lipschitz in u, uniformly with respect to (x, x), i.e., there exists ® > 0 such
that |L(x,u,x) — L(x,v,x)| < ®|u — v|, for all (x, x,u) and (x, x,v) € dom(L).

Here (LSC) follows from basic facts of convex analysis (see [5, Theorem A.3]).

Proposition 2.1. [ /4, Theorem 1] Both the backward Lax-Oleinik semigroup

t

wa(x)=y(it1)1£x w(V(O))JrfL(V(T),Tf(ﬂ()/(f)),y(f))df 2.1)
0

and the forward Lax-Oleinik semigroup

t

Trp(x) = sup Py (1) — / Ly (D), T oy (v), y(r)dt ¢, 2.2)
v (0)=x
0

are well-defined for ¢ € C(M). The infimum (resp. supremum) is taken among absolutely
continuous curves y : [0,t] — M with y(t) = x (resp. y(0) = x). If ¢ is continuous, then
u(x,t) :=T; @(x) represents the unique continuous viscosity solution of (Ao). If ¢ is Lipschitz
continuous, then u(x,t) := T, ¢(x) is also locally Lipschitz continuous on M x [0, 4-00).

Proposition 2.2. [ /4, Proposition 3.1] The Lax-Oleinik semigroups have the following properties

(1) For @1 and g3 € C(M), if 1(x) < @2(x) for all x € M, we have T; ¢1(x) < T; ¢2(x) and
T, o1 (x) < T, @2 (x) for all (x,t) € M x (0, +-00).

(2) Given any ¢ and € C(M), we have |T, ¢ — T, Ylloo < €' [l — Vlloo and | T, —
T Yoo <e® o — ¥ lloo forall > 0.
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Following Fathi [7], one can extend the definitions of backward and forward weak KAM
solutions of equation (B) by using absolutely continuous calibrated curves instead of C! curves.

Definition 2.3. A function u_ € C(M) is called a backward weak KAM solution of (By) if
(1) For each absolutely continuous curve y : [/, 1] — M, we have

t

u—(y(®) —u_(y()) < / L(y (s), u—(y(s)), y(s))ds.

t/
The above condition reads that u_ is dominated by L and denoted by u_ < L.

(2) For each x € M, there exists an absolutely continuous curve y_ : (—oo,0] — M with
y—(0) = x such that

0

u—(x) —u—(V—(t))Z/L(V—(S),u—()/—(S)),?—(S))ds, Vi <0.

t
The curves satisfying the above equality are called (#_, L, 0)-calibrated curves.

A forward weak KAM solution of (By) can be defined in a similar manner. Similar to [18,
Proposition 2.8], one has

Proposition 2.4. Let ¢ € C(M). Then

T (—o)=T, ¢, T, (—p)=Trp, Vi>0, (2.3)
where ]_",i denote the Lax-Oleinik semigroups associated to L(x, —u, —Xx).

The following two results are well known for Hamilton-Jacobi equations independent of u.
They are also true in contact cases. We will prove them in Appendices A.l and A.2. Proposi-
tion 2.5 provides some equivalent characterizations of Lipschitz subsolutions. Proposition 2.6
shows that 7," is a ‘weak inverse’ of 7,

Proposition 2.5. Let ¢ € Lip(M). The following conditions are equivalent:
(1) ¢ is a Lipschitz subsolution of (Bo);

(2) o< L;
(3) foreacht >0,

T o=9=Trg.
Proposition 2.6. For each ¢ € C(M), we have TtJr oT, o <p<T; o T,+(p forallt > 0.
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The following three results come from [14], which give some connections among the fixed
points of T,i, the lower (resp. upper) half limit, backward (resp. forward) weak KAM solutions
and Aubry sets.

Proposition 2.7. [ /4, Proposition D.4] Let u_ € C(M). The following statements are equivalent:
(1) u— is a fixed point of T, ;

(2) u— is a backward weak KAM solution of (By),

(3) u— is aviscosity solution of (By).

Similarly, let v € C(M). The following statements are equivalent:

(1) vy is a fixed point of T,*;

(2°) vy is a forward weak KAM solution of (By);

(3) —wvy is a viscosity solution of H(x, —u(x), —Du(x)) =0.

Proposition 2.8. [ /4, Theorem 3 and Remark 3.5] Let ¢ € C(M).

(1) If T, ¢(x) has a bound independent of t, then the lower half limit
P(x) = 1ir(1)1+inf{T[_(p(y) cdx,y)<r, t>1/r}
r—

is a Lipschitz solution of (By).
) If T,+g0(x) has a bound independent of t, then the upper half limit

¢(x) = lim sup{T,Tp(y): d(x,y) <r, t > 1/r},
r—0+

is a Lipschitz forward weak KAM solution of (By).

(3) Let u_ be a solution of (By). Then Tt+u_ <u_. The limit uy :=lim;— 400 T,+u_ exists, and
U is a forward weak KAM solution of (By).

(4) Let vy be a forward weak KAM solution of (By). Then T, vy > vy. The limit v_ :=
limy— 400 Ty vy exists, and v_ is a solution of (By).

Proposition 2.9. [/4, Theorem 3] Let u_ (resp. uy) be a solution (resp. forward weak KAM
solution) of (Bo). We define the projected Aubry set with respect to u_ by

T, ={xeM:u_(x)= lim T u_(x)}.
t—>—+00
Correspondingly, we define the projected Aubry set with respect to uy by
Ly, =xeM: uy(x)= t_leoo T, uy(x)}.

Both T,,_ and I, are nonempty. In particular, if ui(x) = lim, 1 Tt+u_(x) and u_(x) =
limy 400 T; u4(x), then
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qu = IM+ ’
which is also denoted by L, _ ), following the notation introduced by Fathi [7].
3. Some estimates on subsolutions

In this section, we assume the existence of subsolutions of (E() and prove some a priori
estimates on subsolutions. The existence of subsolutions will be verified for ¢ > ¢¢ in Proposi-
tion A.6 below.

Let L(x, x) be the Lagrangian associated to H (x, p). Let T,i be the Lax-Oleinik semigroups
associated to

L(x,x)—A(x)u(x)+c.

Similar to [9, Proposition 2.1], one can prove the local boundedness of L (x, x) in a neighborhood
of the zero section of T M.

Lemma 3.1. Let H(x, p) satisfy (C)(CON)(CER), there exist constants § > 0 and Cp, > 0 such
that the Lagrangian L(x, x) associated to H (x, p) satisfies

L(x,§) <Cr, VY(x,§)€M x B(0,9). 3.1)
Throughout this paper, we define
u:=diam(M)/$§, 3.2)
where diam (M) denotes the diameter of M.
Lemma 3.2. Let ¢ € C(M). Then

(1) T; ¢ has an upper bound independent of t;
2) Tl+<p has a lower bound independent of t.

Proof. Taking x| € M with A(x1) > 0. We first show

L(x1,0)+c¢

}, vVt > 0.
Alxy)

T p(x1) < maX{w(xl),

Otherwise, there is t > 0 such that

L(xl,O)—i—c} - L(x1,0)+¢

T, o(x1) >maX{<P(X1), o) )

There are two cases:
(i) For all s € [0, ¢], we have

L(x1,0)+c¢

Ty o(xy) > Ao
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Taking the constant curve y = x, we have

t

T (x1) <@(x1) +/ [L(Xl,o) +c— l(Xl)Tf(P(Xl)}dS < @(x1),
0

which also leads to a contradiction.
(ii) There is tg > 0 such that

L(x1,0)+c¢

T, o(x1) = o)

’

and

L(x1,0)+c¢

o) , Vs e (g, 1]

T o(x1) >

Taking the constant curve y = x1, we have

t

T, o) =T o(x1) +/ |:L(x1,0) +c— )»(Xl)Ts_<P(X1)i|dS <
0

L(x1,0)+c¢
A(x1)

’

which leads to a contradiction.

We then prove that for all x € M and all # > 0, 7T, ¢(x) is bounded from above. It suffices to
prove that forall x e M and ¢t > 0, T, M(p(x) is bounded from above, where u is given by (3.2).
Let o : [0, ] — M be a geodesic connecting x; and x with constant speed, then ||| <§. Let

Ko ‘= max {w(xl)’ M}

Ax1)

Given x # x;. We assume thr#gp(x) > K. Otherwise the proof is completed. Since
T, p(x1) < Ko, there exists o € [0, u) such that T, ,¢(a(0)) = Ko and T, ;@(a(s)) > Ko
for all s € (o, n]. By definition

N

T se(a(s)) < Ttlgw(a(a))+/ [L(a(f),d(f))—k(a(f))'Tt+r¢(a(f))+0]dr

o

N

=Ko +/ [L(Ot(f), a(1)) — Ma(r)) - Ty p(a(D) + C}dr,

o
which implies
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Ttlsfﬂ(a(S))—KoS/ [L(Ol(f),d(f))—)»(a(f))'T,H(P(Oé(f))—i—c}dt

S

< f |:L(oz(t),d(r)) —Aa(r)) - Ky +c:|dr +Ao/ [thrrgo(a(r)) — Ko]dt

(e

N

<Lopu+ /\o/ [Tz+f¢(a(f)) - Ko}dt,

[

where Ag is given by (1.1) and
Ly:=Cr+ *Kop+c,
where Cp is given by (3.1). By the Gronwall inequality, we have
T1,0(a(s)) — Ko < Lope™C™7 < Lope™*, Vs € (0, u).

Taking s = j we have T, ,¢(x) < Ko + Lope™o".
Similar to the argument above, by choosing constant curve y(t) = x with t € [0, ¢] and
replacing 7,1, ¢ by Ttiﬂgo, one has

L(x2,0)+c¢

_ AOM
) } Loue™". 3.3)

T, ¢(x) = min {w(Xz),
This completes the proof. O

Corollary 3.3. Let ug be a Lipschitz subsolution of (Eo). Then T, ug (resp. T["uo ) has an upper
(resp. lower) bound independent of t and u.

Proof. We only prove 7, uq has an upper bound independent of ¢ and ug. The case with Tﬁuo
is similar. Let

e:= min H(x,p). 34
(x,p)eT*M

By (CER), ey is finite. By the definition of the subsolution, H (x1, p) + A(x1)up(x1) < ¢ for any
p € D*ug(x1), where D* denotes the reachable gradients. It implies

Axpuo(x)) <c— min  H(x, p) =c—ep.
(x,p)eT*M

Hence, for each subsolution u¢, we have

c— €
Axp)

up(x1) <

Let
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c—egy

Ko:=—,
Alx1)

Lo:=Cp+ X Ko +c,
where A is given by (1.1). Here we note that

L(x1,0)+c= sup (—=H(x,p))+c<— min H(x,p)+c=c—ep.
pETX*M (x,p)ET*M

By Lemma 3.2, we have
T, uo(x) < Ko+ Lope*o*. (3.5)
This completes the proof. O

Proposition 3.4. There exists a constant C > 0 such that for any subsolution u of (Ey), there
holds

lullwie < C.
Proof. By Proposition 2.5, for each t > 0,
T,+u <u=<T u.
By Corollary 3.3, there exist Cy, C» independent of u# such that
Cr<u<0(.

For each x,y € M, let « : [0,d(x, y)/8] — M be a geodesic of length d(x, y) with constant
speed ||&|| = & and connecting x and y, where d(x, y) denotes the distance between x and y
induced by the Riemannian metric g on M. Then

L(x(s),a(s)) <Cr, Vsel0,d(x,y)/s].
By Proposition 2.5,

d(x,y)/8

u(y) —u(x) < [ [L(a(s), a(s)) — Ma(s))u(a(s)) + C}ds
0

1
< E(CL + Ao max{|Cy|, |Cal} +C)d(x, y) =kd(x,y).

Note that « is independent of the choice of the subsolution u. We get the equi-Lipschitz continuity
of u by exchanging the role of x and y. O
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Proposition 3.5. Let ug be a Lipschitz subsolution of (Eg). Then

u_ = T up(x), uy:= 1—132100 T, ug(x)

lim
—>+400

exist, and the limit procedure is uniform in x. Moreover, u_ is a solution of (Ey), and u is a
forward weak KAM solution of (Ey). In particular, (Ey) has a solution u_ for ¢ > cy.

Proof. We only prove that u_ :=lim;_, yoc T; uo(x) exists, and it is a viscosity solution of (Ey).
The existence of u is similar. By Proposition 2.8

u_(x):= rgr(r)1+inf{T,_uo(y) cd(x,y)<r, t>1/r}

is a solution of (Ep). By Proposition 2.5(3) and Corollary 3.3, for a given x € M, the limit
lim;— 400 T} up(x) exists. By definition, we have

i_(x) < lim T, up(x).
t——+00
Using Proposition 2.5(3) again, T, u¢ is increasing in ¢ for all # > 0, we have

T, uo(x) = rgr(r)1+inf{T,_u0(y) d(x,y) <r}

< li%l inf{T, suo(y): dx,y) <r, t+s>1/r}=1u_(x).
r—0+

Then lim;_, 4o T; o = ti—. Note that i_ is a solution of (Ep). By Dini’s theorem, the family
{T; uo}¢>0 uniformly converges tosi_. O

4. Structure of the solution set of (E()

Let S_ (resp. S4) be the set of all solutions (resp. forward weak KAM solution) of (Eo).
4.1. The maximal solution

We first prove the existence of the maximal solution. Since each solution is a subsolution,
by Proposition 3.4, there are C; and C; such that Cy <u_ < C| for all u_ € S_. Note that all
solutions of (E() are fixed points of 7; . We take a continuous function ¢ > C7 as the initial data.

By Proposition 2.2 (1), T, ¢ is larger than every solution of (E(). By Lemma 3.2(1), 7;” ¢ has
an upper bound independent of ¢. By Proposition 2.8 (1), the lower half limit

Po(x) = 111(1)1 inf{T, () : dx,y) <r, t > 1/r}
r—0+

is a Lipschitz continuous viscosity solution of (Eo). Since 7, ¢ is larger than every solution of
(Eop), we have
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o(x) = lil’(l)l inf{T, () : d(x,y) <r, t > 1/r}
r—0+

> lim inflv_(y): d(x,y) <r}=v_(x),
r—0+

for all v_ € S_. Thus, ¢(x) is the maximal solution of (E).
4.2. The minimal solution

Since each forward weak KAM solution is dominated by L(x,x) — A(x)u + ¢, by Propo-
sition 2.7, it is a subsolution of (E(). By Proposition 3.4, there are C; and C» such that
Cy <uy < Cq for all uy € S4. We take a continuous function ¢ < C, as the initial data.
By Proposition 2.2 (1), 7,%¢ is smaller than every forward weak KAM solution of (Ey). By
Lemma 3.2(2), T;" ¢ has a lower bound independent of ¢. By Proposition 2.8 (2), the upper half
limit

$(0) = lim sup{T; " p(y): d(x,y) <r, t > 1/r}
r—0+

is a forward weak KAM solution of (Eg). Since T,+(p is smaller than every forward weak KAM
solutions of (E), we have

o(x)= 1i1(1)1 sup{T[‘Yp(y) cdx,y)<r, t>1/r}
r—0+

< lim supfvy (y): d(x.y) <r}=vi(0),
r—0+

for all vy € S. Thus, ¢(x) is the minimal forward weak KAM solution of (E). By Proposi-
tion 2.8 (4), Poo := limy_, yoo T} ¢ exists, and it is a solution of (Ep).

Lemma 4.1. ¢ is the minimal solution of (Ey).
Proof. Define

P_i={u_eS_: i eS;suchthatu_ = lim T, u}.
t—+00

We first prove that for each v_ € P_, there holds v— > ¢o. In fact, by definition of P_, there is
uy € St such that v_ =1limy_ 4o T, u4. Since ¢ is the minimal forward weak KAM solution,
we have

M+Z(2J

Acting T, on both sides of the inequality above, and letting # — +00, we have v_ > @oo.

We then prove that for each v_ € S_\P_, v— > @ still holds. Let vy := lim;—, 4 Tt+v_
and u_ :=1lim;_, 4o T; v4. Then u_ € P_, which implies u_ > @o. By Proposition 2.8 (3),
v4+ < v_. Then we have T; vy < T; v— = v_. Taking t — 400 we get u_ < v_. Therefore,
V- Zu- =P O

So far, we complete the proof of Theorem 1.
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4.3. On Example (1.5)

The Hamiltonian of (1.4) is formulated as

2
H(x,u,p):%+sinx~u+cos2x—1. 4.1y

We first show ¢y = 0. Assume (1.4) admits a smooth subsolution #y when ¢ < 0, then we have
|u6(0) |2 < 2¢ < 0, which is impossible. When ¢ = 0, the constant function ¢ = 0 is a subsolution
of (1.4). Therefore co = 0. By Proposition 3.5, there is a solution u_ of (1.4) given by

u_:= lim T, ¢.

t——+00

Since T, ¢ > ¢, then u_ > 0.
We then divide the proof into the following steps:

e In Step 1, we discuss the dynamical behavior of the contact Hamiltonian flow q)f{ generated
by H(x,u, p), which is restricted on a two dimensional energy shell M°.
. In Step 1.1, we show that the non-wandering set of <I>tH consists of four fixed points;
. In Step 1.2, we classify these fixed points by linearization;
. In Step 1.3, we show that for each solution v_ of (1.4), the ¢-limit set of any (v_, L, 0)-
calibrated curve y : (—o00,0] — S! with y(0) # /2 and 37/2 can only be 0 or 7. We
only focus on the projected a-limit set defined on S!. For simplicity, we define

a(y)={xe S!: there exists a sequence t, — —oo such that |y (#,) — x| — 0},

where y : (—00,0] — S! is a (v_, L, 0)-calibrated curve. Moreover, we check the
constant curves y(¢t) = 0,7 are calibrated curves, which implies v_(0) = v_(7) =0,
v (0)=v"_(7)=0.
e In Step 2, we prove the uniqueness of the solution v_ of (1.4).

. In Step 2.1, we prove that v_ is unique near 0 and 7;

. In Step 2.2, we prove that v_ is unique on [, 27r) by the comparison along calibrated
curves via the Gronwall inequality. The uniqueness of v_ on [0, ] is guaranteed by the
comparison principle for the Dirichlet problem.

Step 1. The dynamical behavior of the contact Hamiltonian flow.

For each solution v_ of (1.4), let y : (—o0, 0] — S!bea (v_, L, 0)-calibrated curve. Similar
to the analysis at the beginning of [11, Section 3.2], the derivative v’ (y(¢)) exists for each
t € (—00,0) and the orbit (y(r), v—_(y (£)), v"_(y(¢))) satisfies the contact Hamilton equations
generated by the Hamiltonian H (x, u, p) defined in (4.1). Then the proof of the uniqueness of
the solution of (1.4) is related to the contact Hamiltonian flow thH generated by H(x, u, p).

Since co =0 and H(y(¢), v_(y(t)), v _(y(t))) =0 for t € (—o0, 0), we discuss the flow on
the two dimensional energy shell

M®:={(x,u, p) e T*S' x R: H(x,u, p)=0}.
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Note that along the contact Hamiltonian flow, we have d H/dt = —H 0 H /du, which equals to
zero on the set M. Thus, M 0 is an invariant set under the action of CI)tH . Since we are interested
in the orbit (y (z), v_(y (¢)), v"_(y (¢))), we then consider the flow <I>f{ restrict on M°. The contact
Hamilton equations then reduce to

X =p,
p=—(cosx-u—2sin2x) —sinx - p, 4.2)
iw=p°.

Step 1.1. The non-wandering set. We first consider the non-wandering set Q of ®#|,. Sup-
pose there is an orbit (x (), u(t), p(¢)) belongs to 2. Since u = p%>0,u(r) equals to a constant
¢y and p(t) =0. By x(¢) = p(t) =0, x(¢) also equals to a constant c¢,. By H(x,u, p) =0 and
p =0, we have

sinx -u +cos2x —1=0.
By p =0 and p =0 we have
cosx -u — 2sin2x = 0.

A direct calculation shows that the only non-wandering points are
b4 3
P1=(07050)7 P2=(7T,0,0), P3:(57250)7 P4=(77_270)‘

Step 1.2. The classification of fixed points. We then consider the dynamical behavior of <I>lH | 110
near the fixed points. After a translation, we put the fixed points to be the origin. Near the points
P1 and P,, the linearized equation of (4.2) is

x=p, p=4x, u=0.

Thus, P; and P, are hyperbolic fixed points for the dynamical system thH |p0. Near the points
P3 and P4, the linearized equations of (4.2) are

x=p, p=-2x—p, u=0
and

x=p, p=—2x+p, u=0
respectively. Thus, P3 is a stable focus, and Py is an unstable focus.
Step 1.3. The «-limit set of calibrated curves. The «-limit set of a (v—, L, 0)-calibrated curve y
is contained in the projection of 2. If y itself is not a fixed point, and the «-limit of y is a focus,
then there are two constants 1] < 1, < 0 with y (1) = y (1) such that v'_(y (1)) # v__(y(12)),

which is impossible. In other words, the obits near a focus can not form a 1-graph. Thus, the
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a-limit of y : (—o0, 0] — S! with ¥ (0) # 7/2,37/2 can only be either 0 or 7. For constant
curve y : (—oo, 0] — S! with y () = xo and x equals to either 0 or 77, we have

t

v (x0) — v_(x0) = 0= / L(xo, v_(x0), 0)ds,
0

where

.2
L(x,u,x)= % —sinx-u —cos2x + 1

is the Lagrangian corresponding to H(x,u, p). Then the constant curve y is a (v_, L,0)-
calibrated curve. We then have

l_ljr_noo v_(y(®) =v-(0) =v_(7) =c, =0,
and
im L (y (1) = v (0) =L (7) =0.

Step 2. The uniqueness of the solution v_ of (1.4).

Step 2.1. For x € S'\{7/2,37/2}, let y : (—00,0] — S! with y(0) =x be a (v_, L,0)-
calibrated curve. We claim that there is a constant § > 0 such that for x € [0, §], the «-limit
of the calibrated curve y is 0. If not, the «-limit of y is & for all x € (0, ]. Then v_ is de-
creasing on (0, ], since v_ is increasing along y by the last equality of (4.2). By Step 1.3,
v_(0) =v_(r) =0, we get v— = 0 on [0, 7], which is impossible. By similar arguments, we con-
clude that there is a constant § > 0 such that the ¢-limit of y is O for x € [0, §]U[27r — &, 27), and
the a-limit of y is 7 for x € [r — 8, & + 8]. Shrink § if necessary, the 1-graph (x, v_(x), v’ (x))
coincides with the local unstable manifold of P; (resp. P») corresponding to the restricted flow
¢>F|Mo when x € [0, 8] U [27 — 6, 27) (resp. x € [t — §, w + §8]). Therefore, the solution v_ is
unique on [0, §]U [27r — §,2x) U [ — 8, m 4 4].

Step 2.2. Since sinx > sind > 0 for x € [§, 7 — §], by the uniqueness of the solution of the
Dirichlet problem (cf. [3, Theorem 3.3]), v_ is unique on [0, ]. It remains to consider the
uniqueness of v_ for x € [7,27). Assume that there are two solutions #_ and v_ satisfying
u_(x) > v_(x) at some point x € (w + §,37/2). Let y be a (v_, L, 0)-calibrated curve with
y (0) = x. Without any loss of generality, we assume the «-limit of y is . We take #y < 0 such
that y (tp) = 7w + &, and define

G(s):=u_(y(s)) —v-(y(s)), se€lrn,0]

Then G(ty) = 0 and G(0) > 0. By continuity, there is op € [ty, 0) such that G(op) = 0 and
G(o) > 0 for all o € (09, 0]. By definition we have

o

u_(y(0)) —u_(y(00)) S/L(V(S),u—(V(S)), y(s))ds,

o0

291



P. Ni and L. Wang Journal of Differential Equations 403 (2024) 272-307

and

o

v—(y(d))—v—()/((fo))=fL(V(S),v—(V(S)),?(S))ds,

00
which implies

(e

G(o) S/G(s)ds.

a0

By the Gronwall inequality, we have G (o) =0 for all o € (o9, 0], which contradicts u_(x) >
v_(x). The case x € (37/2,2m — §) is similar. By the continuity of v_ at 37 /2, we finally
conclude that the solution is unique on [, 277).

Remark 4.2. The method introduced in this section can be generalized to the following case

H(x,Du) +A(x)u=c, xeS,
where A(x) and H (x, p) are of class C3 and

(i) the zero points of A(x) are x] and x, and A’ (x) # 0 at x| and xp;
(i) H (x, p) is strictly convex and superlinear in p, H (x, p) = H(x, —p),

max H(x,0)=0
xeS!

and the maximum is achieved at x| and x, and the Hessian matrix of H is negative definite
at (x1,0) and (x2,0) € T*S';

(iii) for all x € S, let y : (—00, 0] — S! with ¥ (0) = x be a calibrated curve, then the o-limit
of y is either x1 or x».

By (ii), H (x, p) > H (x, 0), where the equality holds if and only if p = 0. By the argument at the
beginning of this section, it is direct to see the critical value co = 0. Now let ¢ = 0. The contact
Hamilton equations for ®#|,,0 are

=" )
X =—(W, 5
ap P
) oH /
p=—" (. p) = = A, @3
. 0H
u=—(x,p)p.
op

By (ii), # > 0 and the equality holds if and only if p = 0. By the second equation in (4.3), there
is only one non-wandering point of <I>[H | a0 over xj (resp. x2)
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P1=(x1,0,0) (resp. P> =(x2,0,0))

Note that

L(x,0)= sup —H(x,p)=— inf H(x,p)=—H(x,0).
pET*Sl pET*Sl

Similar to Step 1.3 above, we have v_(x1) = v_(x2) = 0 for each solution v_. Near the points
P1 and P», the linearised equation is

3’H N ?H . 0°H  3’H
= X —_— y =X —
dxdp op? PP dx2 8x8pp

x

)

By (ii), P; and P, are hyperbolic fixed points. By (iii) and # > 0, the solution is unique near x
and x;. The remaining proof is similar to Step 2.2 above, we omit it for brevity.

5. Large time behavior of the solution of (CP)

Let us recall umax (resp. u;in) be the maximal solution (resp. minimal forward weak KAM so-
lution) of (Ep). These two solutions play important roles in characterizing the large time behavior
of the solution of (CP).

5.1. Above the maximal solution

Let ¢ > umax. Then T, @ > upmax. Combining with Lemma 3.2(1), 7, ¢(x) has a bound inde-
pendent of ¢. Then the pointwise limit

u(x) :=limsup 7, ¢(x)

t—>—+00

exists.
Assume (x) holds. By Proposition 1.6, the family {7, ¢(x)};>1 is equi-Lipschitz in x. We
denote by « the Lipschitz constant of 7, ¢(x) in x. Since

Isup T~ @(x) —sup I o (y)| = sup [T ¢(x) — T @(y)| =«d(x, y),
s>t s>t s>t
the limiting procedure
i(x)= lim il;r; T o(x)

is uniform in x. Thus, the function i (x) is Lipschitz continuous. We assert that  is a subsolution.
If the assertion is true, by Proposition 3.5, lim;_, y o 7, #(x) exists, and it is a solution. Since
T, ¢ > umax, we have u > umax. Thus, lim;—, 1 5o T, & = umax. Based on Section 4.1, the lower
half limit ¢ = upax. By the definition of ¢, we have

liminf 7,” ¢(x) > @(x) = umax-
t——+00
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On the other hand,

limsup 7, @(x) =u(x) < lim 7, i(x) = umax(x).
t—+00 1—>+00

It follows that lim,_, 4 oo 7, ¢ = Umax uniformly on M.

It remains to prove u is a subsolution. By Proposition 2.5, we only need to show 7, i is
increasing in 7.

We claim that for every ¢ > 0, there exists a constant so > 0 independent of x such that for
any s > sp,

T, (x) <i(x) +e.

Fixing x € M, by definition of limsup, for every ¢ > 0, there is so(x) > 0 such that for any
s > s50(x),

€
T, o(x) <u(x)+ 3
Taking r := 3% For s > so(x), we have

T o(y) < T p(x) +rd(x,y) <i(x) + § +rd(x, y)
<u(y)+ g +2kd(x,y) <u(y)+e, VyeB(x).

Since M is compact, there are finite points x; € M such that for each y € M, there is a point x;
such that y € B, (x;). Let so := max; so(x;) and the claim is proved.
By Proposition 2.2, for each t > 0 we have

T (T, @(x) < T, (i(x) + &) < T, ii(x) + ee™,
where Ag := ||A(x)]|oo > 0. Taking the limit s — +o00, we have

i(x) =limsup T, (T, @ (x)) < T, it (x) + g™’

§—>+00
Letting ¢ — 0+, we get i(x) < T; u(x), which means 7; u(x) is increasing in ¢.
5.2. Below the minimal solution

We have proved that for each ¢ > umax, lim;— 400 T; ¢ = Umax uniformly on M. Combining
with Proposition 2.4 and Proposition 2.7, one has

+

min

Lemma 5.1. Let o € C(M). If ¢ < u’. | then lim,_, 4 o0 T,Jr(p =u

min? uniformly on M.

+
min

Lemma 5.2. Let ¢ € C(M) and there is a point xo € M such that ¢(xo) < u
tends to —oo uniformly on M as t — 400.

(x0), then T;~ ¢(x)
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Proof. We first prove that min,ep 7, ¢(x) tends to —oo as ¢ — +o00. We argue by contradic-
tion. Assume there is a constant K; and a sequence {#,},en suchthat 7, "¢ > K. By Lemma 3.2,
T, ¢ also has a upper bound independent of ¢. Thus, the function v, (x) := T, "¢(x) is bounded
continuous for each n. By Proposition 2.6, we have ¢(xg) > T,j vy (x0). By Proposition 3.4, all
subsolutions are uniformly bounded. Denote by K their lower bound. Let K’ := min{K, K>},
then 7; v, > T,;'K’. By Lemma 3.2(2), T,"K’ has a lower bound independent of ¢. Since
K' < K», T,+K " is smaller than every forward weak KAM solution of (Ey). By Lemma 5.1,
lim,_, 4 oo 7,7 K’ exists and it equals to u;;in. We conclude

+

U (xo) < limsup T, v, (x0) < @(xo) < ugy, (xo).

ty—>—+00

which leads to a contradiction.

We then prove that 7, ¢(x) tends to —oo uniformly as ¢+ — +o00. Let W(x) be the inverse
function of x > xe*. Taking 0 < n < W(1)/Ao. We define K () := minyey T, ¢(x), which
tends to —oo as t — 400. We take an arbitrary x € M. If T,fmrp(x) < K(t), then the proof is
finished. So we assume 7,1, ¢(x) > K (7). Let x; be the minimal point of 7, ¢. Taking a geodesic
a: [0, n] = M with «(0) = x;, @(n) = x and constant speed ||| < diam(M)/n. By continuity,
there is o € [0, n) such that T, j¢(a(0)) = K(¢) and T, ;p(a(s)) > K(t) for all s € (o, n].
Then

N

Ttlsﬁo(a(S))STtlgw(a(G))Jr/ [L(Oé(f)»ol(f))—)n(ot(f))~Tt3rr<P(0l(f))+C]dt

o

N s

§K(t)+/|:L(oz(r),d(r))—AOK(t)+ci|dr+kof|:T,:_T<p(a(t))—K(t)i|dr

o o

N

<K () +Crn—ronK @)+ ?»0/ [Tt+r<ﬂ(a(f)) - K(t)}df,

o

where

L= max |L(x,x)+c|
xeM,||x||<diam(M)/n

is finite for a fixed n by the assumption (x). By the Gronwall inequality, we have

T;7,0(a(s) < Crne + (1 — rone’ K (1).

Since n < W(1)/Ag, we have 1 — oneron > 0. Taking s = n, we finally conclude that 7, ¢(x)
tends to —oo ast — +oo. O

So far, we complete the proof of Theorem 2.
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5.3. Proof of Theorem 3

According to Proposition A.6, for ¢ > ¢y, (Ep) has a Lipschitz subsolution. Let u#( be a subso-
lution of (Eg) with ¢ = ¢q. For ¢ > ¢, there holds

Tt+u0 <ug < T, ugp.

One can construct two different solutions #_ and v_ of (Ep) from u( by Proposition A.7. Pre-
cisely, we have

u_= lim T, up, uy= lim T ug, v—= lim T, uy. (5.1)
—+00 t—+00 t—+00

It follows that u <up <u-—_.

Lemma 5.3. Let ¢ > cg. For each a € (0, 1] and each solution w— of (Ey), the convex combina-
tion

Uy =oug+ (1 —a)w_
is a strict subsolution of (Ey). In particular, we have Tfua <ug <T; ugy.
Proof. Since uy is a Lipschitz subsolution of (E() with ¢ = ¢, we have
H(x, Dug(x)) + A(x)ug(x) + (c—cg) <c, aexeM.
Since w_ is a solution of (Eg), we have
Hx,Dw_x)+r(x)w_(x)=c, a.e.xeM.
Therefore
oaH(x, Dupg(x)) + (1 —a)H (x, Dw_(x))
+ A(x) (auo(x) + (1 — ot)w_(x)) +a(c—co)<c, ae.xeM.
By the convexity of H (x, p) with respect to p, the Jensen’s inequality gives
H(x,Duy(x)) + A(x)ug(x) < (1 —a)c+acy, a.e.xeM.
Let €g :=a(c — ¢g) > 0. Then
H(x, Dug(x)) + A(X)ug(x) + €90 <c, a.e.xeM.
By Lemma A.2, Tﬁua <uyg <T; uy. 0O

Lemma 5.4. Let ¢ > cg. Define u_ and v— as in (5.1). Then u—_ is the maximal solution of (Ey),
and v_ is the minimal solution of (Ey).
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Proof. In the first step, we prove that there is no solution w_ different from u_ such that w_ >
u_. Assume that there is such a solution w_. Since ug < u_ < w_, there is @ € (0, 1) such that
Uy = aug + (1 — a)w_ satisfies

min(u_(x) — uy(x)) =0.
xeM
Let xo € M be the point at which the above minimum is attained. Then
T, ug <T, u_.
By Lemma 5.3, we have T; uqy(x0) > uq(x0) = u—(x0) = T, u—_(xp), which leads to a contra-
diction.

We then turn to prove that u_ is the maximal solution, that is, w_ < u_ for all solutions w_.
Assume that there is a solution w_ such that

max(w_(x) —u_(x)) > 0.
xeM

Let yo € M be the point at which the above maximum is attained. Then the function u(x) :=
max{u_(x), w_(x)} is a subsolution. By Proposition 3.5, we get a solution

We also have

w—(y0) = u(yo) = w—-(yo) > u—(yo)-

Then w_ is different from u_ and w_ > u_. This contradicts what we got in the first step.

Similar to the argument above, we conclude that u is the minimal forward weak KAM
solution of (E). By Lemma 4.1, v_ is the minimal solution of (Ep). O

Let us recall ug is a subsolution of (Eq) with ¢ = ¢g. For ¢ > ¢g, there holds

T,+u0 <ug < T; up.
By Proposition 2.2(1) and Proposition 2.6, we have
T w0 > T 0T fug =T, o (T, o T ug) > T, up
for all #, s > 0. Letting s — +00, we have
s—ljl-?oo T 50 Tt+u0 = Umax, 5.2)

+

for each ¢t > 0. Let ¢ € C(M) satisfy u:ﬁn < @ =< Umax. Since u_ = lim; 40 T,+u0 by

Lemma 5.4, there is fg > 0 such that Tt;ruo < @ on M. Then we have
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Tto_+s ° Tl(—)i_uo = Tt0_+s(p =< Umax-
Letting s — 400 and by (5.2), we have

Iim 7, ¢ = umax.
t—>—+00 0 @ max

+

Now we assume () holds. Then for each ¢ > u_. , there is ¢ and ¢, such that

Q1 > Umax, UL < @2 Sumax, @2 <9 <.
Then we have T, @2 < T; ¢ < T, ¢1. Since lim;—, 1 o0 T, ¢i = Umax fori =1, 2, we have
t—1>1-|r¥loo T, ¢ = tmax.

The proof of Theorem 3 is now complete.
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Appendix A. Auxiliary results
A.1. Proof of Proposition 2.5
Lemma A.1. If ¢ is a Lipschitz subsolution of (By), then ¢ < L.
Proof. Without loss of generality, we assume M is an open set of R”. In fact, for each absolutely
continuous curve y : [0,¢] — M, we cover it by local coordinate charts. Clearly, there exists
N € N such that [0, ¢t] = UlN:?)l[t,-, tix1] with #9 =0, ty =, such that y ||, ;] is contained in an
open subset of R”.

By [9, Proposition 2.4], there is a function ¢ € L*°([0, t], R™) such that for almost all s €
[0, £], we have

Wlit1

d
PRAAS =q(s) -y (s),
s

and the vector ¢ (s) belongs to d.¢(y (s)). Here we recall the definition of the Clarke’s generalized
gradient

e (x) := ﬂﬁ{D(p(y) . y € B(x,r), and ¢ is differentiable at y},

r>0
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where co stands for the closure of the convex combination. Since ¢ is a Lipschitz subsolution of
(By), if ¢ is differentiable at y, we have

H(y,p(y), Dp(y)) <0.

By the convexity of H with respect to p, and the definition of d.¢(x), we have

H(x,9(x),q) <0, Vqed.p().

We conclude that

t

t
d
<p()/(l))—w(y(O))=/%<P(V(S))d5=/q(S)-J?(S)dS
0

0
t
Sf [L(V(S),w(V(S)),V(S))+H(V(S),¢(V(S)),Q(S))}ds
0
t

< / Ly (s), 0y (), ¥ (5))ds,
0

which impliesp < L. O

Lemma A.2. If ¢ < L, then for each t > 0, we have T,” ¢ > ¢ > T,  ¢. Moreover, if there exists
€o > 0 such that for a.e. x € M,

H(x,u, Du) + €y <0,
then
Tﬁgo <o <T, .

Proof. In the following, we only prove 7, ¢ > ¢ for each ¢ > 0, since the proof of T;" ¢ < ¢
is similar. By contradiction, we assume there exists xop € M such that ¢(xg) > T; ¢(xp). Let
y 1[0, t] = M be a minimizer of T, ¢ with y(t) = xo, i.e.

t

T, ¢(x) = ¢(y(0) + / L(y (7). T; ¢(y (1)), y(0))d. (A.T)
0

Let F(t) :=o(y(r)) — T ¢(y(7)). Since F(t) > 0 and F(0) = 0, then one can find s¢ € [0, ¢)
such that F'(s9) =0 and F(s) > O for s € (s, ¢]. A direct calculation shows

s

F(s) §®/F(t)dr,

S0
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which implies F(s) <0 for s € (sg, t] from the Gronwall inequality. It contradicts F(¢) > 0.
Next, we assume there exists €y > 0 such that for a.e. x € M,

H(x,u, Du) 4+ ¢y <0.

Let us denote
L(x,u,%):=L(x,u,x)— ¢

and let 7~’_ be the Lax-Oleinik semigroup associated to L. By a similar argument above, we have
T ¢ > ¢ and T+go < ¢. Note that L<L. Using a similar argument as [17, Proposition 3.1],
T ¢ <T, ¢and T+g0 > T+g0 for each ¢ > 0. Therefore, 7; ¢ > ¢ and T+(p < ¢ foreacht > 0.
This completes the proof. O

Lemma A.3. If for each t > 0, T, ¢ > ¢, then ¢ is a Lipschitz subsolution of (Ey).

Proof. Fix T > 0, by assumption we have 7, ¢ > ¢ for each ¢ € [0, T]. By [14], there is
a constant Ro > 0 depending on 7 and ||D¢|«, such that ||DT; ¢(x)||lcc < Ro. Let R :=
max{Ry, || D¢|lx}, we make a modification

HR(x,u, p) := H(x,u, p) + max{||p|* — R?,0}.
Then 7, ¢ is also the solution of (A() with H replaced by Hg. One can prove that the Lagrangian
Lp corresponding to Hg is continuous. By the uniqueness of the solution of (A(), we have
T o= Tthp, where Tthp is defined by (2.1) with L replaced by Lg.
Let ¢ be differentiable at x € M. For each v € T M, there is a C! curve y 1[0, T] > M with
y(0) = x and y (0) = v. By assumption for each ¢ € [0, T'], we have

t

ey ) < T ey ) =T oy (1) < p(x) + / Lr(y(s), T o(y (5)), 7 ($))ds.
0

Dividing by ¢ and let ¢ tend to zero, using the continuity of y, Lr and TtR ¢(x). We get

Do(x) v < Lgr(x, @(x),v).

Since v is arbitrary, we have

Hg(x, p(x), Do(x)) = sup [D<P(X) v — Lp(x, (), v)] <0

velxyM

Therefore, ¢ is a Lipschitz subsolution of
Hg(x,u(x), Du(x)) =0
By the definition of Hp, ¢ is also a Lipschitz subsolution of (Bp). O
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A.2. Proof of Proposition 2.6

We only prove ¢ < T,” o T," ¢, the other side is similar. We argue by a contradiction. Assume
that there is x € M and ¢ > 0 such that

T, o T o(x) < o(x).

Let y : [0,t] — M with y (¢) = x be a minimizer of 7, o T,+go(x), and define

F(s): =T 0(y(s) =T, o T, oy (s)).

Then F(0) =0 and F(¢) > 0. By continuity, there is o € [0, #) such that F (o) =0and F(r) >0
for all t € (o, t]. By definition, for s € (o, t] we have

N

T, oT p(y(s) =T, oT, o(y(0)) + / L(y(0), T, o T p(y (1)), y(x))dt

o

N

= ;faw(y(a))Jr[L(V(T),TffoTﬁqD(V(T)),J?(T))dT

o

> T L0y () — / Ly (@), T;L 0y (0)), y (x))dt

o

N

+ / Ly, T; o T p(y (1), y(1)dt

o

N

> T 9y () — ®/ F(r)dr,

o
which implies

S

F(s) < @/F(t)dr.

g

By the Gronwall inequality, we have F(s) =0 for s € [o, t], which contradicts F () > 0.
A.3. Proof of Proposition 1.2

A.3.1. c¢o and subsolutions
Inspired by [4], we denote

co:= inf sup{H(x,Du)+A(x)u}.
ueC®(M) yepm
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Proposition A.4. ¢y is finite.

Proof. Choose u(x) =0, then by definition,

co < sup H(x,0) < +o0.
xeM

Let us recall

ey:= min H(x,p)> —o0.
(x,p)eT*M

By the assumption (+), there exists xg € M such that A(xp) = 0. Thus for each u € C*°(M),

co= inf sup {H(x, Du(x)) +A(x)u(x)}
ueC®(M) yem

> inf {H(xo, Du(xo)) + )»(XO)M(XO)}
ueC® (M)
= inf H(xg, Du(xg)) = eyp.
ueC® (M)
This means cg is finite. O

Proposition A.5. For ¢ < ¢, (Eo) has no continuous subsolutions.

Proof. By contradiction, we assume for ¢ < ¢p, (Eg) admits a continuous subsolution u : M —
R. By the definition of the subsolution, for any p € DV u(x),

H(x,p) <c—=x@)u(x) <c+rollulloo-
Combining (CER), one can conclude that u is Lipschitz continuous (see [8, Proposition 1.14] for

more details). By [6, Lemma 2.2], for all & > 0, there exists u, € C°° (M) such that ||u — us|co <
gand forall x e M,

H(x, Du,(x)) + A(x)u(x) <c+e.
We choose ¢ = mwo —¢) > 0, then
H(x, Dug(x)) + A(x)ug (x)

< H(x, Dug(x)) + 2)u(x) + Aollu — uelloo

<+ (14 xp)e < co,
this contradicts the definition of ¢g. O
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A.3.2. Existence of subsolutions and solutions
Let us recall that T,i denote the Lax-Oleinik semigroups associated to

L(x,x)—A(x)u(x)+c.

Proposition A.6. For ¢ > ¢, (Eo) has a Lipschitz subsolution. Let ug be a subsolution of (Ey)
with ¢ = c¢q. For ¢ > cq, there holds

T,+u0 <ug < T; up.

Proof. By the definition of ¢, there exists u, € C°° (M) such that for all x € M,

H(x, Du,(x)) + A(x)u,(x) <co+ % (A2)
Namely, u, is a subsolution of
H(x, Du) + A(x)u =co + 1.
By Proposition 3.4, {u,},>1 is equi-bounded and equi-Lipschitz continuous. Then by the

Ascoli-Arzela theorem, it contains a subsequence {u,, };cN uniformly converging on M to some
ug € Lip(M). By the stability of subsolutions (see [2, Theorem 5.2.5]), u¢ is a subsolution of

H(x, Du) + A(x)u = cop.
Moreover, for ¢ > cg and a.e. x € M, we have
H(x, Dugy) + 2(x)ug + (¢ — cp) <c.
By Lemma A .2,
T,+u0 <ug < T; up.
This completes the proof. O

Combining Propositions A.5, A.6 and 3.5, we conclude that (Ep) has a solution if and only if
¢ > cp. It remains to prove the following result.

Proposition A.7. (Ey) has at least two solutions for ¢ > cy.

Proof. By Proposition A.6, if ¢ > ¢, there exists a strict Lipschitz subsolution u¢ of (Ep). Based
on Proposition 2.5, for ¢ > 0,

T, uo(x) > up(x), T, uo(x) < up(x). (A.3)
Denote

303



P. Ni and L. Wang Journal of Differential Equations 403 (2024) 272-307

i - i +
u_ ._Z_l}?ooTt up(x), uy ._t_l)lglooTt uo(x), (A4)
and
v_ = t_l)igloo T, uy(x). (A.5)

By Proposition 3.5, u_ and v_ are solutions of (Ey).
It remains to verify u_ # v_. By contradiction, we assume #_ = v_ on M. In view of (A.5),
we have
u_ = tligrnoo T, uy(x). (A.6)
Based on (A.6), it follows from Proposition 2.9 that
Ly, =xeM:u_(x)=us(x)} #0. (A.7)

On the other hand, from (A.3) and (A.4), it follows that for any x € M,

U (x) < up(x) <u—(x), (A.8)
which implies
Z,, =9.

This contradicts (A.7). O
A.4. Proof of Proposition 1.6

Assume that H(x, p) is continuous and satisfies the condition (x). Then the associated La-
grangian L(x, X) satisfies

(CL): L(x,x)and %(x, X) are continuous;
(CON): L(x,x) is convex in X, for any x € M
(SL): there is a superlinear function 7 (r) such that L(x, x) > n(||x])).

With a slight modification, [1, Theorem 2.2] implies

Lemma A.8. (Erdmann condition). For each (x,t) € M x (0,400), let y : [0,t] > M be a
minimizer of T, ¢(x). Set u1(s) := T ¢(y (s)) with s € [0, 1], and

oL
Eo(s) := g(y(S), y(8) -y (s) — L(y(s), y(s)),
then

E(s) 1= ) MM By (5) + A(y (s))ui (5)]
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satisfies E(s) =0a.eon|0,t].
Based on Lemma A.8, we have

Theorem A.9. The function (x,t) — T, ¢(x) is locally Lipschitz on M x (0, +00). More pre-
cisely, given two positive constants § and T with § < T. For each ¢ € C(M) and t € [§, T, the
Lipschitz constant of T, ¢(x) depends only on ||¢|c0, § and T

Proof. Step 1. Lipschitz estimate of minimizers. Given (x,t) € M x [§, T]. In the following,
we denote by y : [0,¢] = M a minimizer of 7, ¢(x). We focus on the Lipschitz regularity
of the curve y. Note that T; (—||¢llec) < T; ¢ < T; |l¢llco, I; ¢ is bounded by a constant K
depending only on ||¢|l~ and 7. We then have

t
K= Tf<p()€)=<p()/(0))+/ [L()/(S),J?(S)) —)»(V(S))Ty_fp(y(S))}dS
0
t

> —ll¢lloc = 20KT + / L(y(s), y(s))ds.
0

By (SL), there is a constant D such that L(y (s), y(s)) > ||y (s)|| + D, then we have

t
K + (koK + |DDT + [[¢lloo = / Iy ($)llds.
0

Thus, there is sg € [0, ¢] such that ||y (sg)|| is bounded by a constant depending only on ||¢|| o0, &
and T'. Recall

E(s) i= eJo XM [ o5y 4. (y (5)uy (5)]
By Lemma A8, E(s) =0 a.e. on [0, ¢]. It follows that

Eo(s) < e (|Eg(s0)| + 20K) + 20K := Fy.

By (CON) we have
y(s) . aL . .
L ——)—L —_ —1)— .
(y(s), 1+||J7(S)||) ()/(S),)/(S))Z(l_’_”y(s)” )8)% (y(s),y(s)-y(s)
1
—— —D(F1+ L , Y .
2(1+”)}(s)” Y(F1+ L(y(s), 7(s)))

We denote by K3 the bound of L(x, x) for ||x|| < 1. Then we have

L(y(s),y(s)) =2K3 + F}.
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By (SL), ||y (s)] is bounded by a constant depending only on ||¢| s, § and T.

Step 2. Lipschitz estimate of (x, ¢) — 7, ¢(x). We first show that u(x, 1) := T, ¢(x) is locally
Lipschitz in x. For any r > 0 with 2r < §, given (xg, ) € M x [§, T] and x, x" € B(xq, r), denote
by dp :=d(x, x’) < 2r < § the Riemannian distance between x and x’, we have

t

ulx',t) —u(x,t) < / |:L(oe(s), a(s)) — Aa(s)u(a(s), s)i|ds

t—doy

t
- / [L(V(S),J?(S))—?»(V(S))M(V(S),S)]ds,

t—dop

where y (s) is a minimizer of u(x,t) and « : [t —dy, t] — M is a geodesic satisfying o (t — dp) =
y(t — dp) and «a(r) = x" with constant speed. By Step 1, the bound of ||y (s)|| depends only on
l¢lloo, 8 and T. Since

d(y(t —do),x") _ d(y(t —do), ) 41

Y <
la@)l < & @

)

andd(y(t —dp), x) < ftt—do [l (s)|lds, the bound of ||&(s)|| also depends only on |||/, 6 and T'.
Exchanging the role of (x, ) and (x', ), one obtains that |u(x, ) —u(x’, t)| < J1d(x, x"), where
J1 depends only on ||¢]ls0, § and T. By the compactness of M, we conclude that for 7 € [§, T,
the value function u(-, t) is Lipschitz on M.

We are now going to show the locally Lipschitz continuity of u(x, ¢) in ¢. Given ¢ and ¢’ with
§<t<t' <T.Lety:[0,t']— M be a minimizer of u(x, t’), then

/

t

ux, t')y —u(x,t) =uly (), —u(x,1) +/ [L(V(S), y(s) — )»(V(S))M(V(S),S)}ds,
t

where the bound of ||y (s)|| depends only on ||¢|lc0, § and 7. We have shown that for r > §, the
following holds

/

t
u(y (), 1) —ux, 1) < Jid(y (@), x) < Ji / Iy (s)llds < Jo(t" —1).
t

Thus, u(x,t’) —u(x,t) < J3(t' —t), where J3 depends only on ||¢||co, 8§ and T. The condition
t' <t is similar. We conclude the Lipschitz continuity of u(x,-) on [§, T]. O

Let |7, ¢(x)]loo < K for all # > 0, with the bound K independent of ¢. Note that 7, ¢(x) =

T oT,_jp(x). Fix §=1/2 and T =1 in Theorem A.9. It follows that the Lipschitz constant

of T} o T,_ ¢(x) depends only on K, which is independent of ¢. This completes the proof of
Proposition 1.6.
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