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Abstract. By exploiting the dynamics around the Aubry set of contact Hamiltonian
systems, we provide a relation among the Mather set, the recurrent set, the strongly
static set, the Aubry set, the Mañé set and the non-wandering set. Moreover, we
consider the strongly static set, as a new flow-invariant set between the Mather set
and the Aubry set, in the strictly increasing case. We show that this set plays an
essential role in the representation of certain minimal forward weak KAM solution
and the existence of transitive orbits around the Aubry set.
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1. Introduction

In [13, 21], the Aubry-Mather theory was developed for conformally symplectic sys-
tems and contact Hamiltonian systems with strictly increasing dependence on the con-
tact variable u respectively. The conformally symplectic systems are closely related
to discounted Hamiltonian systems (see e.g., [6, 16]), which serve as a class of typical
examples for more general contact cases. In [23], the Aubry-Mather theory was fur-
ther developed for contact Hamiltonian systems with non-decreasing dependence on u.
More information on the Aubry set was founded, such as the comparison property, graph
property and a partially ordered relation for the collection of all projected Aubry sets
with respect to backward weak KAM solutions. Loosely speaking, the Aubry-Mather
theory and weak KAM theory are two kinds of parallel ways to describe the global
minimizing dynamics of contact Hamiltonian systems. The former is concerned with
“orbits”, while the later focus on “weak KAM solutions”. This kind of solutions can be
viewed as certain generalization of generating functions in Hamiltonian systems. One
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can also see [1, Section 46] for a vivid description on the connection between orbits and
solutions of Hamilton-Jacobi equations.

1.1. Basic assumptions. Assume M is a connected, closed (compact without bound-
ary) and smooth Riemannian manifold. We choose, once and for all, a C∞ Riemannian
metric g on M . Denote by dist(·, ·) and d(·, ·) the distance on M and T ∗M ×R induced
by g respectively. C(M,R) stands for the space of continuous functions on M . ‖ · ‖∞
denotes the supremum norm on C(M,R). ‖ · ‖x denotes a norm on T ∗xM and TxM . Let
H : T ∗M × R→ R be a C3 function satisfying

(H1) Strict convexity: ∂2H
∂p2

(x, p, u) is positive definite for all (x, p, u) ∈ T ∗M × R;

(H2) Superlinearity: for every (x, u) ∈M × R, H(x, p, u) is superlinear in p;
(H3) Non-decreasing: there is a constant λ > 0 such that for every (x, p, u) ∈ T ∗M×R,

0 ≤ ∂H

∂u
(x, p, u) ≤ λ.

We consider the contact Hamiltonian system generated by
ẋ = ∂H

∂p (x, p, u),

ṗ = −∂H
∂x (x, p, u)− ∂H

∂u (x, p, u)p, (x, p, u) ∈ T ∗M × R,
u̇ = ∂H

∂p (x, p, u) · p−H(x, p, u).

(CH)

In order to handle global dynamics, it is necessary to assume additionally

(A) Admissibility: there exists a ∈ R such that

inf
u∈C∞(M,R)

sup
x∈M

H(x,Du, a) = 0.

This formulation is inspired by the concept of the Mañé critical value [5]. From a PDE
point of view, the assumption (A) holds true if and only if the stationary Hamilton-
Jacobi equation

H(x,Du, u) = 0, x ∈M,

has a viscosity solution (see [18, Theorem 1.4]). IfH is independent of u, this equivalence
was shown in [12].

The necessity of (A) can be shown by the following example:

H(x, p, u) = h(x, p) + g(x)u, x ∈ T,
where T denotes a flat circle. The function g : T → R does not vanish identically and
satisfies 0 ≤ g(x) ≤ λ. If g(x) > 0 for all x ∈ T, based on the compactness of T,
g(x) ≥ δ for certain positive constant δ. In this case, h(x,Du) + g(x)u = 0 has the
unique viscosity solution. Namely, (A) always holds. If there exist x0 ∈ T such that
g(x0) = 0, then (A) may not hold. For example, consider the Hamilton-Jacobi equation

1

2
|Du|2 + V (x) + g(x)u = 0.

Assume V : T→ R is of class C3 with V (x0) > 0 and g(x0) = 0. Then for all a ∈ R,

inf
u∈C∞(T,R)

sup
x∈T

{
1

2
|Du|2 + V (x) + g(x)a

}
≥ inf
u∈C∞(T,R)

{
1

2
|Du|2 + V (x0) + g(x0)a

}
=V (x0) > 0.
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Therefore, (A) is necessary to be assumed.

1.2. Aims, obstructions and contributions. In this paper, we continue to develop
the Aubry-Mather theory and weak KAM theory for contact Hamiltonian systems under
(H1)-(H3) and (A). It is well known that the Aubry set plays a central role in both
theories for classical Hamiltonian systems. In [15], R. Mañé obtained some properties
of the Aubry set from the perspective of topological dynamics. Inspired by this work,
we are concerned with the following problems.

• The topological dynamics on the Aubry set, such as the recurrence property,
the non-wandering property and their relations to the Mather set and Mañé set.
• The representation of weak KAM solutions, and the interplay between weak

KAM solutions and the dynamics around the Aubry set.

Under (H1)-(H3) and (A), the backward and forward weak KAM solutions are not one-
to-one correspondent like classical cases (i.e. ∂uH ≡ 0). We have to deal with some
new issues as follows.

(1) In classical cases, the Aubry set is chain-recurrent (see [4, 15]). Even in strictly
increasing contact cases, the Aubry set may contain non-chain recurrent points
(see Proposition 2.11(i)(ii) below).

(2) In strictly increasing cases, the backward weak KAM solution is always unique.
Unfortunately, the dynamics reflected by the backward weak KAM solution is
too rough. Thus, one has to exploit the structure of the set of forward weak
KAM solutions to reveal more dynamical information. However, the structure
of this set is rather complicated (see Proposition 2.11(iii)(iv) below).

(3) The complicated structure of the set of weak KAM solutions causes certain
difficulties to show the the interplay between weak KAM solutions and the
dynamics around the Aubry set. For example, even if ∂uH vanishes at only
one point, some new phenomena from both dynamical and PDE aspects would
appear. More precisely, we consider

1

2
|Du|2 + f(x)u = 0, x ∈ T,

where f : T→ R is a C3 function with f(x0) = 0, f(x) > 0 for all x ∈ T\{x0}.
It is clear that u ≡ 0 is a viscosity solution. Besides, there exists an uncountable
family of nontrivial viscosity solutions {vi}i∈I and the definition of the Aubry set
essentially depends on vi (see [23, Proposition 1.11] for more details). Compara-
bly, in classical cases, the definition of the Aubry set is independent of viscosity
solutions.

Corresponding to the issues above, we summarize the main contributions in this paper
as follows:

• Regarding Item (1), we find the Aubry set is too large to characterize the dy-
namics with recurrent or non-wandering property. Thus, we introduce so called
the strongly static set, which is a new flow invariant subset of the Aubry set.
We prove that the strongly static set is always non-wandering. Moreover, in
order to locate this set in a series of action minimizing invariant sets, we prove
an inclusion relation among the Mather set, the Aubry set, the Mañé set, the
recurrent points and the non-wandering points. For the definitions of the first
three sets, see Section 2.1.2 below. The latter two sets are the basic concepts
in the classical theory of topological dynamical systems. This result is given by
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Theorem 1. It is worth mentioning that the strongly static set always coincides
with the Aubry set in the classical case.
• Regarding Item (2), we focus on the structure of the set of forward weak KAM

solutions in the strictly increasing case. The existence of the maximal element
in this set was shown in [21]. Unfortunately, the minimal forward weak KAM
solution may not exist in the sense of total order. For example,

u+
1

2
|Du|2 = 0, x ∈ T, (1.1)

where T := (−1
2 ,

1
2 ] denotes the flat unit circle. Let S+ be the set of all forward

weak KAM solutions of (1.1). It is not difficult to see

v(x) := min
S+

v+(x) ≡ −1

8
,

which is not a forward weak KAM solution of (1.1). Based on Zorn’s lemma, we
prove the existence of the minimal forward weak KAM solution in a partially
ordered sense. Moreover, we show that the strongly static set plays an essential
role in the representation of the minimal forward weak KAM solution. This
result is given by Theorem 2. Loosely speaking, in the strictly increasing cases,
the Aubry set is only related to the unique backward weak KAM solution and
the maximal one. The strongly static set is necessarily involved in order to
characterize the property of forward weak KAM solutions except the maximal
one.
• Regarding Item (3), since the Aubry set may contain wandering points, we need

to introduce a more flexible dynamics to detect the interplay between weak
KAM solutions and the dynamics around the Aubry set. The non-wandering
property can be viewed as “neighborhood recurrence”. Thus, we consider a kind
of dynamical property that can be viewed as “neighborhood transition”. More
precisely, we introduce the following definition.

Definition 1.1 ( transitive orbit). Given X1, X2 ∈ T ∗M ×R, we say there is a
transitive orbit from X1 to X2 if for any neighborhoods U1 of X1 and U2 of X2,
there exists an orbit that begins in U1 and later passes through U2.

Remark 1.2. It is clear that a transitive orbit from X1 to X2 is a pseudo-orbit
with arbitrarily small jumps. In particular, there are at most two jumps of the
transitive orbit, and these jumps are only allowed to happen around the adjoining
points of X1 and X2. Following [17, Definition 1.1.8], we write X1  X2 in the
following if there is a transitive orbit from X1 to X2. Similar to [17, Lemma
1.1.2], the relation

R( ) = {(X1, X2) ∈ (T ∗M × R)2 : X1  X2}
is also closed, see the proof below Lemma 4.2 in Section 4.

Finally, we obtain a result on the interplay among weak KAM solutions, the
strongly static set and the existence of transitive orbits around the Aubry set.
This result is given by Theorem 3.

2. Statement of main results

To state the main results (Theorem 1, Theorem 2 and Theorem 3 below) in a precise
way, we need to prepare some notions and notations. They mainly come from [19–23].
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2.1. Notions and notations.

2.1.1. Weak KAM solutions. Let L : TM×R→ R be the contact Lagrangian associated
to H(x, p, u) via

L(x, ẋ, u) := sup
p∈T ∗xM

{〈ẋ, p〉x −H(x, p, u)} ,

where 〈·, ·〉x represents the canonical pairing between the tangent and cotangent space
at x ∈M . Since H satisfies (H1), (H2) and (H3), then L(x, ẋ, u) satisfies

(L1) Strict convexity: ∂2L
∂ẋ2

(x, ẋ, u) is positive definite for all (x, ẋ, u) ∈ TM × R;
(L2) Superlinearity: for every (x, u) ∈M × R, L(x, ẋ, u) is superlinear in ẋ;
(L3) Non-increasing: there is a constant λ > 0 such that for every (x, ẋ, u) ∈ TM×R,

−λ ≤ ∂L

∂u
(x, ẋ, u) ≤ 0.

Following Fathi [8], one can define weak KAM solutions of

H(x,Du, u) = 0, x ∈M. (HJ)

It can be proved that the backward weak KAM solutions of (HJ) are equivalent to the
viscosity solutions.

Definition 2.1. A function u− ∈ C(M,R) is called a backward weak KAM solution of
(HJ) if

(i) for each continuous piecewise C1 curve γ : [t1, t2]→M , we have

u−(γ(t2))− u−(γ(t1)) ≤
∫ t2

t1

L(γ(s), γ̇(s), u−(γ(s)))ds;

(ii) for each x ∈ M , there exists a C1 curve γ : (−∞, 0] → M with γ(0) = x such
that

u−(x)− u−(γ(t)) =

∫ 0

t
L(γ(s), γ̇(s), u−(γ(s)))ds, ∀t < 0. (2.1)

Similarly, a function u+ ∈ C(M,R) is called a forward weak KAM solution of (HJ)
if it satisfies (i) and for each x ∈ M , there exists a C1 curve γ : [0,+∞) → M with
γ(0) = x such that

u+(γ(t))− u+(x) =

∫ t

0
L(γ(s), γ̇(s), u+(γ(s)))ds, ∀t > 0. (2.2)

We denote by S− (resp. S+) the set of backward (resp. forward) weak KAM solutions
of equation (HJ).

2.1.2. Action minimizing objects. The definitions of the action minimizing invariant sets
are based on the variational principle of contact Hamiltonian systems. See [19, Theorem
A] for the following result, which holds under (H1), (H2) and |∂H∂u | ≤ λ instead of (H3).

Proposition 2.2. For any given x0 ∈ M , u0 ∈ R, there exists a continuous function
hx0,u0(x, t) defined on M × (0,+∞) satisfying

hx0,u0(x, t) = u0 + inf
γ(0)=x0
γ(t)=x

∫ t

0
L(γ(τ), γ̇(τ), hx0,u0(γ(τ), τ))dτ, (2.3)
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where the infimum is taken among Lipschitz continuous curves γ : [0, t]→M . Moreover,
the infimum in (2.3) is achieved. Let γ be a Lipschitz curve achieving the infimum and

x(s) := γ(s), u(s) := hx0,u0(γ(s), s), p(s) :=
∂L

∂ẋ
(γ(s), γ̇(s), u(s)).

Then (x(·), p(·), u(·)) : [0, t] → T ∗M × R satisfies equations (CH) with x(0) = x0,
x(t) = x and

lim
s→0+

u(s) = u0.

We associate to hx0,u0(x, t) another action function hx0,u0(x, t), which is also defined
implicitly by

hx0,u0(x, t) = u0 − inf
γ(t)=x0
γ(0)=x

∫ t

0
L(γ(τ), γ̇(τ), hx0,u0(γ(τ), t− τ))dτ, (2.4)

where the infimum is taken among Lipschitz continuous curves γ : [0, t]→M .
Based on the action functions, one can define action minimizing curves.

Definition 2.3 (Globally minimizing curves). A curve (x(·), u(·)) : R → M × R is
called globally minimizing, if it is locally Lipschitz and for each t1, t2 ∈ R with t1 < t2,
there holds

u(t2) = hx(t1),u(t1)(x(t2), t2 − t1). (2.5)

The positively minimizing curves (resp. negatively minimizing curves) can be defined
in a similar manner. We say positively (resp. negatively), we mean the curve is defined
on R+ (resp. R−), and (2.5) holds for t1, t2 ∈ R+ (resp. ∈ R−). If a curve (x(·), u(·)) :
R→M × R is global minimizing, then x : R→M is of class C1. Let

p(t) :=
∂L

∂ẋ
(x(t), ẋ(t), u(t)), t ∈ R. (2.6)

Then (x(·), p(·), u(·)) : R→ T ∗M×R satisfies equations (CH) (see [21, Propostion 3.1]).
Following Mañé [15], the notion of static and semi-static curves for contact Hamiltonian
systems were introduced in [21] and [23] respectively.

Definition 2.4 (Semi-static curves). A curve (x(·), u(·)) : R → M × R is called semi-
static, if it is globally minimizing and for each t1 ≤ t2 ∈ R, there holds

u(t2) = inf
s>0

hx(t1),u(t1)(x(t2), s). (2.7)

Definition 2.5 (Semi-static orbits). If a curve (x(·), u(·)) : R→M ×R is semi-static ,
then (x(·), p(·), u(·)) : R→ T ∗M ×R satisfies equations (CH), where p(·) is determined
by (2.6). We call it a semi-static orbit.

The positively (resp. negatively) semi-static orbits can be also defined in a similar
manner. Denote the flow generated by (CH) by Φt. We define some flow invariant sets
as follows.

Definition 2.6 (Mañé set). We call the set of all semi-static orbits the Mañé set for

H, denoted by Ñ .

We call N := π∗Ñ the projected Mañé set. We denote, once and for all

π∗ : T ∗M × R→M.

We define Ñ+ (resp. Ñ−) as the set of all positively (resp. negatively) semi-static
orbits.
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Definition 2.7 (Static curves). A curve (x(·), u(·)) : R → M × R is called static, if it
is globally minimizing and for each t1, t2 ∈ R, there holds

u(t2) = inf
s>0

hx(t1),u(t1)(x(t2), s) (2.8)

A static orbit is defined as (x(·), p(·), u(·)) : R→ T ∗M ×R, where p(·) is determined by
(2.6).

Definition 2.8 (Aubry set). We call the set of all static orbits the Aubry set for H,

denoted by Ã. The Aubry set is also called the static set.

We call A := π∗Ã the projected Aubry set. Inspired by Mather [14], we define a
subset of the Aubry set from a measure theoretic point of view, so called the Mather
set. Based on Proposition 3.9 below, there exist Borel Φt-invariant probability measures
supported in Ñ , called Mather measures. Denote by M the set of Mather measures.
The Mather set of contact Hamiltonian systems (CH) is defined by

M̃ = cl

 ⋃
µ∈M

supp(µ)

 , (2.9)

where supp(µ) denotes the support of µ.
The invariance of these sets above follows directly from their definitions.

2.1.3. Strongly static set. If H is independent of u, the Aubry set is chain-recurrent.
Unfortunately, it is not true in general contact settings. In order to characterize the
chain-recurrence in the Aubry set, we introduce a new flow invariant set, called strongly
static set.

Definition 2.9 (Strongly static curves). A curve (x(·), u(·)) : R → M × R is called
strongly static, if it is globally minimizing and for each t1, t2 ∈ R, there holds

u(t2) = sup
s>0

hx(t1),u(t1)(x(t2), s). (2.10)

A strongly static orbit is defined as (x(·), p(·), u(·)) : R → T ∗M × R, where p(·) is
determined by (2.6).

Definition 2.10 (Strongly static set).

S̃s := cl({all strongly static orbits}).
where cl(A) denotes the closure of A ⊆ T ∗M × R.

The differences between Ã and S̃s are shown by the following Proposition 2.11. For
the consistency, we postpone its proof in Appendix B.

Proposition 2.11. Let λ > 0 and

H(x, p, u) := λu+
1

2
|p|2 + p · V (x), x ∈ T, (E)

where T denotes a flat circle and V : T → R is a C3 function which has exactly two
vanishing points x1, x2 with V ′(x1) > 0, V ′(x2) < 0. Let S− and S+ be the set of the
backward and forward weak KAM solutions of (E) respectively. Then u− ≡ 0 is the
unique element in S−. Thus, u+ ≡ 0 ∈ S+. Moreover,

(i) if λ > |V ′(x2)|, then the point (x2, 0, 0) is a sink in T ∗T× R;
7



(ii) for any λ > 0,

Ã = {(x, 0, 0) | x ∈ T} , S̃s = {(x1, 0, 0), (x2, 0, 0)} ;

(iii) if λ < |V ′(x2)|, the set S+ consists of two elements u+ ≡ 0 and w+, where
w+ : T→ R satisfies w+(x1) = 0, w+(x) < 0 for each x ∈ T\{x1};

(iv) for λ large enough, S+ may contains more than two elements.

By Proposition 2.11(i)(ii), Ã contains non-chain recurrent points in the example (E).

Nevertheless, S̃s is non-wandering. For Item (iii), we have a rough picture for S± with
V (x) = sinx (see Figure 1).

Figure 1. S± in Item (iii)

2.2. Main results. First of all, we locate the strongly static set in a series of action
minimizing invariant sets, and show its relations to the recurrence property and the
non-wandering property.

Theorem 1 (Topological dynamics around the Aubry set). Let R̃ be the set of

recurrent points. Let Ω̃ be the set of non-wandering points. Then

∅ 6= M̃ ⊆ Ñ ∩ cl(R̃) ⊆ S̃s ⊆ Ã ∩ Ω̃.

The closure cl(R̃) is called the Birkhoff center. The fact M̃ ⊆ Ñ ∩cl(R̃) follows easily

from the Poincaré recurrence theorem. To prove Ñ ∩ cl(R̃) ⊆ S̃s, we need to establish
the Lipschitz continuity of the Mañé potentials, whose proof is postponed to Appendix
A.2. The inclusion S̃s ⊆ Ã ∩ Ω̃ follows from a technical lemma on transitive criterion
(see Lemma 4.1 below).

In order to show the differences of the dynamics between the classical cases and the
contact cases, we enhance the assumption (H3) by

(H3’) Strictly increasing: there is a constant λ > 0 such that for every (x, p, u) ∈
T ∗M × R,

0 <
∂H

∂u
(x, p, u) ≤ λ,

Under (H1), (H2), (H3’) and (A), it is well known that the set of backward weak KAM
solutions S− consists of only one element. Consequently, the Mañé set coincides with the
Aubry set (see [23, Remark 2]). However, the structure of the set of forward weak KAM
solutions S+ may be rather complicated. That causes significant differences between
the Aubry set and the strongly static set, as it is shown in Proposition 2.11.

In order to deal with the other elements in S+ except the maximal one. We define a
partial order in S+:
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v1 � v2 if and only if v1(x) ≤ v2(x) for all x ∈M .

Moreover, we define Zmax a maximal totally ordered subset of S+. Namely, for any
w+ ∈ S+\Zmax, there exist v+ ∈ Zmax and x1, x2 ∈M such that w+(x2) > v+(x2) and
w+(x2) < v+(x2). We will show the existence of minimal elements in S+ in this sense
of partial order. Morever, we will provide a representation for the minimal element in
Zmax.

Theorem 2 (Minimal forward weak KAM solutions).

(1) The partially ordered set (S+,�) has minimal elements.
(2) For each Zmax ⊆ S+, there exists x0 ∈ M depending on Zmax, such that the

minimal element u∗ in Zmax can be represented in the following two manners:

u∗(x) = inf
v+(x0)=u−(x0)

v+∈S+

v+(x) = lim sup
t→+∞

hx0,u−(x0)(x, t),

where M denotes the projected Mather set and h·,·(·, ·) : M ×R×M ×R+ → R
is the action function defined by (2.4).

See Remark 6.8 below for a discussion on the choice of x0, from which one can see
that the strongly static set plays an essential role. By analysing more detailed structure
of S+, one has

Theorem 3 (Existence of transitive orbits). Given X1 := (x1, p1, u1) ∈ Ã, X2 :=

(x2, p2, u2) ∈ S̃s, if for each v+ ∈ S+, v+(x2) = u−(x2) implies v+(x1) = u−(x1), then
X1  X2.

If the forward weak KAM solution is unique, Ã = S̃s (see [23, Proposition 10]). In
this case, the projected strongly static set can be characterized as follows

Ss = {x ∈M | u−(x) = u+(x)},

where u− (resp. u+) denotes the unique backward (resp. forward) weak KAM solution.
From Theorem 3, we have the following corollary.

Corollary 2.12. Given any two points X1, X2 ∈ Ã, if the forward weak KAM solution
is unique, then X1  X2.

Figure 2 provides a rough picture for the dynamics around Ã (projected to M × R)
under the assumption of Theorem 3, where

• Γc denotes a transitive orbit from X1 to X2;
• Γ1

n, Γ2
n denote non-wandering orbits to X1 and X2 respectively.

The rest of this paper is organized as follows. In Section 3, we recall some useful
facts, which mainly come from [21, 23]. In Section 4, we prove a technical lemma on
the existence of certain transitive orbit, from which we obtain the topological dynamics
around the Aubry set in Section 5. In Section 6, we provide more detailed information on
the set of forward weak KAM solutions in the strictly increasing cases. Some auxiliary
results are proved in Appendix A. Finally, we provide a proof of Proposition 2.11 in
Appendix B.
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Figure 2. The dynamics around the Aubry set

3. Preliminaries

Recently, a variational approach for contact Hamiltonian systems was developed in a
series of papers [18–24]. Different from classical cases, all of technical tools for contact
Hamiltonian systems were formed in an implicit manner. The main reason to use the
implicit form is to get rid of the constraints caused by the u-argument. Besides, it is
worth mentioning that an alternative variational formulation was provided in [2, 11] in
light of G. Herglotz’s work [9].

In the following, we collect some facts used in this paper. All of these results hold
under (H1), (H2) and |∂H∂u | ≤ λ.

3.1. Action functions and minimizing curves. Let us collect some properties of
the action functions hx0,u0(x, t) and hx0,u0(x, t) in the following propositions. See [19,
Theorems C, D] and [20, Theorem 3.1, Propositions 3.1-3.4] for more details.

Proposition 3.1.

(1) (Monotonicity). Given x0 ∈ M , u0, u1, u2 ∈ R, if u1 < u2, then hx0,u1(x, t) <
hx0,u2(x, t), for all (x, t) ∈M × (0,+∞);

(2) (Minimality). Given x0, x ∈ M , u0 ∈ R and t > 0, let Sx,tx0,u0 be the set of the
solutions (x(s), p(s), u(s)) of (CH) on [0, t] with x(0) = x0, x(t) = x, u(0) = u0.
Then

hx0,u0(x, t) = inf{u(t) | (x(s), p(s), u(s)) ∈ Sx,tx0,u0}, ∀(x, t) ∈M × (0,+∞).

(3) (Lipschitz continuity). The function (x0, u0, x, t) 7→ hx0,u0(x, t) is locally Lips-
chitz continuous on M × R×M × (0,+∞).

(4) (Markov property). Given x0 ∈M , u0 ∈ R,

hx0,u0(x, t+ s) = inf
y∈M

hy,hx0,u0 (y,t)(x, s)

for all s, t > 0 and all x ∈ M . Moreover, the infimum is attained at y if and
only if there exists a minimizer γ of hx0,u0(x, t+ s) with γ(t) = y.

(5) (Reversibility). Given x0, x ∈ M and t > 0, for each u ∈ R, there exists a
unique u0 ∈ R such that

hx0,u0(x, t) = u.

Proposition 3.2.
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(1) (Monotonicity). Given x0 ∈ M and u1, u2 ∈ R, if u1 < u2, then hx0,u1(x, t) <
hx0,u2(x, t), for all (x, t) ∈M × (0,+∞);

(2) (Maximality). Given x0, x ∈ M , u0 ∈ R and t > 0, let Sx0,u0x,t be the set of the
solutions (x(s), p(s), u(s)) of (CH) on [0, t] with x(0) = x, x(t) = x0, u(t) = u0.
Then

hx0,u0(x, t) = sup{u(0) | (x(s), p(s), u(s)) ∈ Sx0,u0x,t }, ∀(x, t) ∈M × (0,+∞).

(3) (Lipschitz continuity). The function (x0, u0, x, t) 7→ hx0,u0(x, t) is locally Lips-
chitz continuous on M × R×M × (0,+∞).

(4) (Markov property). Given x0 ∈M , u0 ∈ R,

hx0,u0(x, t+ s) = sup
y∈M

hy,h
x0,u0 (y,t)(x, s)

for all s, t > 0 and all x ∈M . Moreover, the supremum is attained at y if and
only if there exists a minimizer γ of hx0,u0(x, t+ s), such that γ(t) = y.

(5) (Reversibility). Given x0, x ∈ M , and t > 0, for each u ∈ R, there exists a
unique u0 ∈ R such that

hx0,u0(x, t) = u.

By definition, we have

Proposition 3.3. Let (x(·), u(·)) : R → M × R be a globally minimizing curve. Then
for all t1, t2 ∈ R with t1 ≤ t2,

u(t2) = inf
s>0

hx(t1),u(t1)(x(t2), s) if and only if u(t1) = sup
s>0

hx(t2),u(t2)(x(t1), s).

Remark 3.4. By Proposition 3.3,

• a curve (x(·), u(·)) : R → M × R is globally minimizing if and only if for each
t1 < t2 ∈ R,

u(t1) = hx(t2),u(t2)(x(t1), t2 − t1); (3.1)

• a curve (x(·), u(·)) : R → M × R is semi-static if and only if it is globally
minimizing and for each t1 ≤ t2 ∈ R,

u(t1) = sup
s>0

hx(t2),u(t2)(x(t1), s); (3.2)

• a positively (resp. negatively) semi-static curve can be also characterized in a
similar manner.

3.2. Lax-Oleinik semigroups, weak KAM solutions and the Mañé set. Let
us recall two semigroups of operators introduced in [20]. Define a family of nonlinear
operators {T−t }t≥0 from C(M,R) to itself as follows. For each ϕ ∈ C(M,R), denote by
(x, t) 7→ T−t ϕ(x) the unique continuous function on M × [0,+∞) such that

T−t ϕ(x) = inf
γ

{
ϕ(γ(0)) +

∫ t

0
L(γ(τ), γ̇(τ), T−τ ϕ(γ(τ)))dτ

}
,

where the infimum is taken among absolutely continuous curves γ : [0, t] → M with
γ(t) = x. Let γ be a curve achieving the infimum, and x(s) := γ(s), u(s) := T−s ϕ(x(s)),
p(s) := ∂L

∂ẋ (x(s), ẋ(s), u(s)). Then (x(s), p(s), u(s)) satisfies (CH) with x(t) = x.

It is not difficult to see that {T−t }t≥0 is a semigroup of operators and T−t ϕ(x) is a
viscosity solution of wt +H(x,w,wx) = 0 with w(x, 0) = ϕ(x).
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Similarly, one can define another semigroup of operators {T+
t }t≥0 by

T+
t ϕ(x) = sup

γ

{
ϕ(γ(t))−

∫ t

0
L(γ(τ), γ̇(τ), T+

t−τϕ(γ(τ)))dτ

}
,

where the infimum is taken among absolutely continuous curves γ : [0, t] → M with
γ(0) = x. Let γ be a curve achieving the infimum, and x(s) := γ(s), u(s) := T+

t−sϕ(x(s)),

p(s) := ∂L
∂ẋ (x(s), ẋ(s), u(s)). Then (x(s), p(s), u(s)) satisfies (CH) with x(0) = x.

The following proposition gives a relation between Lax-Oleinik semigroups and action
functions. See [20, Propositions 4.1, 4.2] for details.

Proposition 3.5. For each ϕ ∈ C(M,R), we have

T−t ϕ(x) = inf
y∈M

hy,ϕ(y)(x, t), T+
t ϕ(x) = sup

y∈M
hy,ϕ(y)(x, t), ∀(x, t) ∈M × (0,+∞).

The following proposition gives a relation between Lax-Oleinik semigroups and weak
KAM solutions. See [18, Lemmas 4.1, 4.2, 6.2] for details.

Proposition 3.6. The backward weak KAM solutions of (HJ) are the same as the
viscosity solutions of (HJ). Moreover,

(i) A function u : M → R is a backward weak KAM solution of (HJ) if and only if
T−t u = u for all t ≥ 0;

(ii) A function v : M → R is a forward weak KAM solution of (HJ) if and only if
T+
t v = v for all t ≥ 0.

By [21, Theorem 1.2] and [22, Theorem 1], we have

Proposition 3.7. S− 6= ∅ if and only if S+ 6= ∅. More precisely, the following state-
ments hold.

(1) Let v− ∈ S−. Then the function x 7→ limt→∞ T
+
t v−(x) is well defined, and it

belongs to S+.
(2) Let v+ ∈ S+. Then the function x 7→ limt→∞ T

−
t v+(x) is well defined, and it

belongs to S−.

In the following context of this section, we proceed under the assumption S− 6= ∅. It
is well known that each u− ∈ S− is semiconcave and u+ ∈ S+ is semiconvex. For each
u± ∈ S±, we define two subsets of T ∗M × R associated with u± respectively by

Gu± := cl
({

(x, p, u) | Du±(x) exists, u = u±(x), p = Du±(x)
})
, (3.3)

where cl(A) denotes the closure of A ⊆ T ∗M × R. Define

Ñv± := Ñ ∩Gv± , Nv± := π∗Ñv± .

The following proposition shows a relation between weak KAM solutions and semi-
static curves. See [23, Proposition 17] for details.

Proposition 3.8. Let (x(·), u(·)) : R → M × R be a semi-static curve. Then there
exists v− ∈ S− (resp. v+ ∈ S+) such that u(t) = v−(x(t)) (resp. u(t) = v+(x(t)) for
each t ∈ R.

The following proposition shows a relation between weak KAM solutions and the
Mañé set. See [23, Theorem 1.3] for details.
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Proposition 3.9. Let v− ∈ S−, v+ ∈ S+. Let

Iv− := {x ∈M | v−(x) = lim
t→∞

T+
t v−(x)}

Iv+ := {x ∈M | v+(x) = lim
t→∞

T−t v+(x)}.

Then both Iv− and Iv+ are not empty. Moreover,

Ñv± = {(x, p, u) ∈ T ∗M × R | x ∈ Iv± , u = v±(x), p = Dv±(x)},

Ñ = ∪v−∈S−Ñv− = ∪v+∈S+Ñv+ .

4. A technical lemma

In this section, we are devoted to proving a technical lemma on the existence of
certain transitive orbit. It will be used in the proofs of Theorem 1 and Theorem 3.

Lemma 4.1 (Transitive criterion). Given X1 := (x1, p1, u1) ∈ Ã, X2 := (x2, p2, u2) ∈
S̃s. If

lim
t→+∞

hx1,u1(x2, t) = u2, lim sup
t→+∞

hx2,u2(x1, t) = u1, (♦)

then X1  X2.

Let Ṽ be the set of (x, p, u) ∈ T ∗M ×R, for which there exists a strongly static orbit

(x(·), p(·), u(·)) : R→ T ∗M × R

passing through (x, p, u). Let V = π∗Ṽ. By the definition of the strongly static set,

S̃s = cl(Ṽ), Ss = cl(V).

To prove Lemma 4.1, we only need to verify

Lemma 4.2. Given any X1 := (x1, p1, u1) ∈ Ã, X2 := (x2, p2, u2) ∈ Ṽ. If

lim
t→+∞

hx1,u1(x2, t) = u2, lim sup
t→+∞

hx2,u2(x1, t) = u1,

then X1  X2.

We give a proof that Lemma 4.2 implies Lemma 4.1.

Proof. Let B(X,R) stand for the open metric ball on T ∗M × R centered at X with
radius R, and let B̄(X,R) stand for its closure.

Given any X2 := (x2, p2, u2) ∈ S̃s. For any neighborhood U of X2, one can find

R > 0 such that B̄(X2, R) ⊂ U . Note that S̃s = cl(Ṽ). Thus, there exists a sequence

{Zn}n∈N ⊆ Ṽ such that
Zn → X2, n→∞.

Hence, there exists N := N(R) > 0 such that

d(X2, ZN ) ≤ R

4
,

which implies

B

(
ZN ,

R

4

)
⊂ B(X2, R).

By Definition 1.1, the existence of the transitive orbit from X1 to ZN implies X1  
X2. �
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The following lemma gives a way to obtain one-sided semi-static curves from one-sided
minimizing curves.

Lemma 4.3.

(1) Given (x0, u0) ∈M×R, let (x(·), u(·)) : R+ →M×R be a positively minimizing
curve with (x(0), u(0)) = (x0, u0). If for each t ≥ 0,

u(t) = inf
τ>0

hx0,u0(x(t), τ). (4.1)

Then for any t1, t2 ∈ R+ with t1 ≤ t2, there holds

u(t2) = inf
τ>0

hx(t1),u(t1)(x(t2), τ). (4.2)

(2) Given (x0, u0) ∈M×R, let (x(·), u(·)) : R− →M×R be a negatively minimizing
curve with (x(0), u(0)) = (x0, u0). If for each t ≥ 0,

u(−t) = sup
τ>0

hx0,u0(x(−t), τ). (4.3)

Then for any t1, t2 ∈ R+ with t1 ≥ t2, there holds

u(−t1) = sup
τ>0

hx(−t2),u(−t2)(x(−t1), τ). (4.4)

Proof. We only prove Item (1). Item (2) follows from a similar argument. Since
(x(·), u(·)) : R+ →M × R is positively minimizing, then

u(t2) ≥ inf
τ>0

hx(t1),u(t1)(x(t2), τ), ∀ 0 ≤ t1 < t2. (4.5)

By assumption, for each t ≥ 0,

u(t) = inf
τ>0

hx0,u0(x(t), τ). (4.6)

It follows that

u(t1) = inf
τ>0

hx0,u0(x(t1), τ), u(t2) = inf
τ>0

hx0,u0(x(t2), τ),

which gives rise to

u(t2) = inf
τ>0

hx0,u0(x(t2), τ) ≤ inf
τ>0

hx0,u0(x(t2), t1 + τ)

≤ inf
τ>0

hx(t1),hx0,u0 (x(t1),t1)(x(t2), τ)

= inf
τ>0

hx(t1),u(t1)(x(t2), τ).

Combining with (4.5), we get (4.2). �

The following proposition shows that for certain minimizing orbits (x(·), p(·), u(·)) :
R → T ∗M × R, p(t) is uniquely determined by (x(t), u(t)) for all t ∈ R. Its proof is
postponed in Appendix A.1.

Proposition 4.4. If (x, p0, u) ∈ Ṽ, (x, p+, u) ∈ Ñ+ (resp. (x, p−, u) ∈ Ñ−), then
p0 = p+ (resp. p0 = p−).

Under (H1)-(H3), by the definitions of hx0,u0(x, t) and hx0,u0(x, t), we have

Proposition 4.5. Given (x0, x, t) ∈M ×M × (0,+∞), u, v ∈ R.

(1) for all u, v ∈ R and all (x, t) ∈M × (0,+∞), |hx0,u(x, t)−hx0,v(x, t)| ≤ |u− v|;
(2) if u ≥ v, then hx0,u(x, t)− hx0,v(x, t) ≥ u− v.
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Proof of Lemma 4.2. Let {tn}n∈N be a sequence satisfying

lim
tn→+∞

hx2,u2(x1, tn) = u1.

Let γn : [0, tn]→M be a curve γn(0) = x1 and γn(tn) = x2 such that

hx2,u2(x1, tn) = u2 −
∫ tn

0
L
(
γn(τ), γ̇n(τ), hx2,u2(γn(τ), tn − τ)

)
dτ. (4.7)

Let un(t) := hx2,u2(γn(t), tn − t). Then un(tn) = u2 and un(0) = hx2,u2(x1, tn). Let

pn(t) :=
∂L

∂ẋ
(γn(t), γ̇n(t), un(t)).

We claim that there exists C > 0 such that

‖pn(0)‖x1 ≤ C, ‖pn(tn)‖x2 ≤ C.
In fact, since un(0)→ u1 as n→ +∞, combining with the compactness of M , then

un(1) = hx2,u2(γn(1), tn − 1) = hx1,un(0)(γn(1), 1)

is bounded independent of n. Similarly, un(tn − 1) = hx2,u2(γn(tn − 1), 1) are bounded
independent of n. Note that un(tn) = u2. Then one can find C > 0 such that both
pn(0) and pn(tn) is bounded by C (see [20, Appendix] for details).

We assume, up to a subsequence,

(γn(0), pn(0), un(0))→ (x1, p
′
1, u1), (γn(tn), pn(tn), un(tn))→ (x2, p

′
2, u2).

In order to prove Lemma 4.2, it suffices to verify

p′1 = p1, p′2 = p2.

First of all, we prove p′1 = p1. By Proposition 4.4, we only need to show (x1, p
′
1, u1) ∈

Ñ+. Let

(x̄(t), p̄(t), ū(t)) := Φt(x1, p
′
1, u1), ∀t ≥ 0.

By the definition of Ñ+, we need to show that

(1) the curve (x̄(·), ū(·)) : R+ →M × R is positively minimizing;
(2) for any t1, t2 ∈ R+ with t1 ≤ t2, there holds

ū(t2) = inf
τ>0

hx̄(t1),ū(t1)(x̄(t2), τ). (4.8)

Since γn : [0, tn]→M satisfies (4.7), by the definition of un(t), we have

un(t1) = hγn(t2),un(t2)(γn(t1), t2 − t1), ∀0 ≤ t1 < t2 ≤ tn.
By the continuous dependence of solutions to ODEs on the initial data,

(γn(t1), un(t1))→ (x̄(t1), ū(t1)), (γn(t2), un(t2))→ (x̄(t2), ū(t2)),

which combining with the Lipschitz continuity of (x0, u0, x) 7→ h·,·(·, t2 − t1) yields

ū(t1) = hx̄(t2),ū(t2)(x̄(t1), t2 − t1), ∀0 ≤ t1 < t2 < +∞.
By Remark 3.4, (x̄(·), ū(·)) : R+ → M × R is positively minimizing. In order to verify
Item (2), by Lemma 4.3(1), we need to prove that for each t ≥ 0,

ū(t) = inf
τ>0

hx1,u1(x̄(t), τ). (4.9)

By definition, we have

ū(t) ≥ inf
τ>0

hx1,u1(x̄(t), τ).
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It suffices to show

ū(t) ≤ inf
τ>0

hx1,u1(x̄(t), τ).

By contradiction, we assume there exist t0, τ0 > 0 such that

ū(t0) > hx1,u1(x̄(t0), τ0).

By Proposition 4.5(2), one can find δ > 0 such that

hx̄(t0),ū(t0)(x1, τ0) = u1 + δ. (4.10)

For each ε > 0, there exists n large enough such that

d((γn(t0), pn(t0), un(t0)), (x̄(t0), p̄(t0), ū(t0))) < ε,

which combining with Lipschitz continuity of (x0, u0) 7→ h·,·(x1, τ0) implies

hγn(t0),un(t0)(x1, τ0) ≥ u1 +
δ

2
.

Note that γn(tn) = x2, γn(0) = x1, un(tn) = u2. It follows that

hx2,u2(x1, tn − t0 + τ0) = hγn(tn),un(tn)(γn(0), tn − t0 + τ0)

≥ hγn(t0),hγn(tn),un(tn)(γn(t0),tn−t0)(γn(0), τ0)

= hγn(t0),un(t0)(γn(0), τ0)

≥ u1 +
δ

2
.

By assumption, lim supt→+∞ h
x2,u2(x1, t) = u1. Letting n → +∞, we have u1 > u1,

which is a contradiction.
Next, we prove p′2 = p2. By Proposition 4.4, we only need to show (x2, p

′
2, u2) ∈ Ñ−.

Let

(x̃(−t), p̃(−t), ũ(−t)) := Φ−t(x2, p
′
2, u2), ∀0 ≤ t < +∞.

We aim to show that

(1) the curve (x̃(·), ũ(·)) : R− →M × R is negatively minimizing;
(2) for any t1, t2 ∈ R+ with t1 ≥ t2, there holds

ũ(−t1) = sup
τ>0

hx̃(−t2),ũ(−t2)(x̃(−t1), τ). (4.11)

The proof of Item (1) is similar to the one of p′1 = p1 above.
Let ηn(−t) := γn(−t + tn) for each t ≥ 0. It follows that ηn : [−tn, 0] → M satisfies

(4.7) with ηn(0) = x2, ηn(−tn) = x1. Let vn(−t) := hx2,u2(ηn(−t), t) for each t ≥ 0.
Then vn(0) = u2 and

vn(−t1) = hηn(−t2),vn(−t2)(ηn(−t1), t1 − t2), ∀0 ≤ t2 < t1 < tn. (4.12)

By (4.12),

vn(−t0) = hηn(−tn),vn(−tn)(ηn(−t0), tn − t0). (4.13)

Similar to the proof of (4.10), we have

hηn(−t0),vn(−t0)(x2, τ0) ≤ u2 −
δ

2
. (4.14)
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By Proposition 4.5(1),

|hηn(−t0),hx1,u1 (ηn(−t0),tn−t0)(x2, τ0)− hηn(−t0),hx1,vn(−tn)(ηn(−t0),tn−t0)(x2, τ0)|
≤|hx1,u1(ηn(−t0), tn − t0)− hx1,vn(−tn)(ηn(−t0), tn − t0)|
≤|u1 − vn(−tn))|.

(4.15)

Then we have

hx1,u1(x2, tn − t0 + τ0) ≤ hηn(−t0),hx1,u1 (ηn(−t0),tn−t0)(x2, τ0)

≤ hηn(−t0),hx1,vn(−tn)(ηn(−t0),tn−t0)(x2, τ0) + |u1 − vn(−tn)|
= hηn(−t0),vn(−t0)(x2, τ0) + |u1 − vn(−tn)|

≤ u2 −
δ

2
+ |u1 − vn(−tn)|,

where the first inequality is from the Markov property of hx1,u1(x, t), the second in-
equality is owing to (4.15), the first equality is from (4.13), and the last inequality is
from (4.14).

Note that ηn(−tn) = x1, ηn(0) = x2, vn(0) = u2. By assumption, hx2,u2(x1, tn)→ u1

as tn → +∞, then vn(−tn) → u1. It is also assumed that limt→+∞ hx1,u1(x2, t) = u2.
Letting n→ +∞, we have u2 < u2, which is a contradiction.

This completes the proof of Lemma 4.2. �

5. Topological dynamics around the Aubry set

5.1. Mather set and recurrence. For each v ∈ S−, Ñv is a flow invariant subset of
T ∗M × R. By Proposition 3.9, the set Ñv is non-empty and compact. Then M̃ 6= ∅
directly follows from the definition of the Mather set and the assumption (A). Next, we
prove

M̃ ⊆ Ñ ∩ cl(R̃).

Note that Mather measures are invariant Borel probabilities. Let µ be a Mather mea-
sure. By the Poincaré recurrence theorem, one can find a set A ⊆ Ñ of total µ-measure
such that if (x0, p0, u0) ∈ A, then there exist {tm}m∈N and {tn}n∈N such that

d ((x0, p0, u0),Φtm(x0, p0, u0))→ 0 as tm → +∞,

d ((x0, p0, u0),Φtn(x0, p0, u0))→ 0 as tn → −∞.
Since Ñ is closed and A is dense in supp(µ), then we have

M̃ ⊆ Ñ ∩ cl(R̃).

5.2. Recurrence and strong staticity. In this part, we aim to show

Ñ ∩ cl(R̃) ⊆ S̃s.
Let (x(·), u(·)) : R→M × R be a semi-static curve. By definition, for each t1 ≤ t2,

u(t2) = inf
s>0

hx(t1),u(t1)(x(t2), s). (5.1)

By Proposition 3.3, we have

u(t1) = sup
s>0

hx(t2),u(t2)(x(t1), s). (5.2)

It remains to prove that for each t1 > t2, (5.2) still holds.
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By Proposition 3.8, there exists v− ∈ S− such that u(t) = v−(x(t)) for all t ∈ R. If
x(t1) = x(t2), then

u(t1) = v−(x(t1)) = v−(x(t2)) = u(t2),

for which (5.2) holds for each t1 > t2.
In the following, we prove the case with x(t1) 6= x(t2). Note that t1 > t2. Since

(x(·), u(·)) : R→M × R is semi-static, we have

u(t2) = sup
s>0

hx(t1),u(t1)(x(t2), s). (5.3)

Let p(t) := ∂L
∂ẋ (x(t), ẋ(t), u(t)). We assume

(x(t1), p(t1), u(t1)) ∈ Ñ ∩ R̃,

Let {τn}n∈N be a sequence such that

d ((x(t1), p(t1), u(t1)),Φτn(x(t1), p(t1), u(t1)))→ 0 as τn → −∞.

Denote ∆ := t2 − t1. By (5.3), if τn < ∆, we have

u(t1 + τn) = sup
s>0

hx(t2),u(t2)(x(t1 + τn), s).

Note that x(t1) 6= x(t2). It follows from the Lipschitz continuity of Mañé potentials (see
Proposition A.2 below) that

u(t1) = sup
s>0

hx(t2),u(t2)(x(t1), s),

which together with (5.3) implies (x(·), u(·)) : R → M × R is a strongly static curve.

Then Ñ ∩ cl(R̃) ⊆ S̃s follows from the closedness of S̃s.

5.3. Strong staticity and non-wandering property. In this part, we are devoted
to proving

S̃s ⊆ Ã ∩ Ω̃.

Let (x(·), u(·)) : R→M ×R be a strongly static curve. Let p(0) := ∂L
∂ẋ (x(0), ẋ(0), u(0)).

LetQ0 := (x(0), p(0), u(0)). By definition, it suffices to prove that for each neighborhood
Un of Q0, there exist Qn ∈ Un and Tn > 0 such that ΦTn(Qn) ∈ Un.

By [18, Theorem 1.4], under (H1)-(H3) and (A), the following function

hx0,u0(x,+∞) := lim
t→+∞

hx0,u0(x, t), x ∈M (5.4)

is well defined. Moreover, for each s, t ∈ R, both limτ→+∞ hx(s),u(s)(x(t), τ). Unfor-
tunately, limt→+∞ h

x0,u0(x, t) is not always well defined. But it can be proved that

lim supτ→+∞ h
x(s),u(s)(x(t), τ) is well defined (see Lemma A.4 below).

Lemma 5.1. Let (x(·), u(·)) : R→M × R be a semi-static curve, then

(1) it is static if and only if

u(t) = lim
τ→+∞

hx(s),u(s)(x(t), τ), ∀s, t ∈ R;

(2) it is strongly static if and only if

u(t) = lim sup
τ→+∞

hx(s),u(s)(x(t), τ), ∀s, t ∈ R.
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Proof. We only prove Item (1). Item (2) follows a similar argument. By definition, we
have

u(t) = inf
τ>0

hx(s),u(s)(x(t), τ) ≤ lim
τ→+∞

hx(s),u(s)(x(t), τ), ∀s, t ∈ R.

On the other hand, for each n ∈ N, we get

u(t) = inf
σ>0

hx(s+n),u(s+n)(x(t), σ).

There is a sequence {σn} ⊂ R+ such that

hx(s+n),u(s+n)(x(t), σn) < u(t) +
1

n
,

which together with the Markov property implies

hx(s),u(s)(x(t), n+ σn) ≤ hx(s+n),hx(s),u(s)(x(s+n),n)(x(t), σn)

= hx(s+n),u(s+n)(x(t), σn)

< u(t) +
1

n
.

Let n→ +∞. Then

u(t) ≥ lim
τ→+∞

hx(s),u(s)(x(t), τ).

Then we have

u(t) = lim
τ→+∞

hx(s),u(s)(x(t), τ), ∀s, t ∈ R.

Conversely, if

u(t) = lim
τ→+∞

hx(s),u(s)(x(t), τ), ∀s, t ∈ R,

then

u(t) ≥ inf
τ>0

hx(s),u(s)(x(t), τ).

Note that (x(·), u(·)) : R → M × R is semi-static. By Proposition 3.8, there exists
v− ∈ S− such that u(t) = v−(x(t)) for each t ∈ R. Combining Proposition 3.5 and
Proposition 3.6, we have

u(t) = v−(x(t)) = T−τ v−(x(t)) = inf
y∈M

hy,v−(y)(x(t), τ)

≤ hx(s),v−(x(s))(x(t), τ) = hx(s),u(s)(x(t), τ), ∀τ > 0,

which implies

u(t) ≤ inf
τ>0

hx(s),u(s)(x(t), τ).

This completes the proof of Lemma 5.1. �

Let x0 := x(0), u0 := u(0). By Lemma 5.1,

lim
t→+∞

hx0,u0(x0, t) = u0, lim sup
t→+∞

hx0,u0(x0, t) = u0.

Then S̃s ⊆ Ã ∩ Ω̃ follows from Lemma 4.1.

Remark 5.2. The Aubry set in the classical case is defined in T ∗M instead of T ∗M×R.
One can embed this set into T ∗M × R by adding the u-argument in the following way.
An important result in weak KAM theory ( [8, Theorem 5.2.8]) shows that there exists
a conjugate pair (u−, u+) such that the Aubry set is represented as

Ĩ(u−,u+) := {(x, p) ∈ T ∗M | u−(x) = u+(x), p = Du−(x)}.
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The embedding Aubry set in T ∗M × R is

Ã := {(x, p, u) ∈ T ∗M × R | (x, p) ∈ Ĩ(u−,u+), u = u−(x).}

Note that Ã = S̃s in the classical case. From Theorem 1, each embedding Aubry set
is non-wandering in T ∗M × R in classical cases. Moreover, each non-wandering set in
T ∗M × R is also an embedding Aubry set by choosing certain conjugate pair (see [10,
Theorem 1.5]). This gives a description for the Aubry set in the classical case without
using action minimizing property.

6. Strictly increasing case

In this section, we consider the cases under (H1), (H2), (H3’) and (A).

6.1. The structure of S+. It was shown by [22, Proposition 12] that

Proposition 6.1. All of elements in S+ are uniformly bounded and equi-Lipschitz con-
tinuous.

Note that (S+,�) is a partially ordered set. In view of Zorn’s lemma, if every chain
in S+ has a lower bound in S+, then S+ contains a minimal element. To prove Item (1)
of Theorem 2, it is suffices to show

Proposition 6.2. Let Z be a totally ordered subset of S+. Let ǔ(x) := infu∈Z u(x) for
each x ∈M . Then ǔ ∈ S+.

Lemma 6.3. There exists a sequence {un}n∈N ⊂ Z such that un converges to ǔ uni-
formly.

Proof. Note that all of elements in S+ are uniformly bounded and κ-equi-Lipschitz
continuous. We only need to construct a sequence {un}n∈N ⊂ Z such that un converges
to ǔ pointwisely.

Since the Riemannian manifold M is compact, it is separable. Namely on can find a
countable dense subset denoted by U := {x1, x2, . . . , xn, . . . }.

Claim. There exists a sequence {un}n∈N ⊂ Z such that for a given n ∈ N and each
i ∈ {1, 2, . . . , n},

0 ≤ un(xi)− ǔ(xi) <
1

n
. (6.1)

If the claim is true, then un converges to ǔ pointwisely. In fact, according to Proposition
6.1, every u+ ∈ S+ is κ-Lipschitz, we have

ǔ(x)− ǔ(y) ≤ sup
u+∈S+

|u+(x)− u+(y)| ≤ κdist(x, y). (6.2)

Fix x ∈ M . There exists a subsequence V := {xkm}m∈N ⊆ U such that |xkm − x| <
1/km. Given km ∈ N, we take n ≥ km. Then {x1, x2, . . . , xn} ∩ V 6= ∅. Let xi0 ∈
{x1, x2, . . . , xn} ∩ V . It follows from (6.2) that

|un(x)− ǔ(x)| ≤ |un(x)− un(xi0)|+ |un(xi0)− ǔ(xi0)|+ |ǔ(x)− ǔ(xi0)|

≤ 2κ dist(xi0 , x) +
1

n
≤ 2κ

i0
+

1

n
.

Let n and i0 tend to +∞ successively. We get the pointwise convergence of un to ǔ.
We prove the claim by induction in the following. For x1 ∈ U , by the definition of

the infimum, there exists u1 ∈ Z such that u1(x1) − ǔ(x1) < 1/n for a given n ∈ N.
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We assume there exists uk ∈ Z such that for i ∈ {1, 2, . . . , k}, uk(xi) − ǔ(xi) < 1/n.
One needs to construct uk+1. For xk+1 ∈ U , if uk(xk+1)− ǔ(xk+1) < 1/n, then we take
uk+1 ≡ uk. Otherwise, we have uk(xk+1) − ǔ(xk+1) ≥ 1/n. In this case, one can find
uk+1 ∈ Z such that uk+1(xk+1)− ǔ(xk+1) < 1/n.

It remains to show uk+1(xi)− ǔ(xi) < 1/n for i ∈ {1, 2, . . . , k}. We know that

uk+1(xk+1) < ǔ(xk+1) +
1

n
≤ uk(xk+1).

Note that Z is totally ordered. It yields uk+1 ≤ uk on M . Thus, for i ∈ {1, 2, . . . , k},

uk+1(xi)− ǔ(xi) ≤ uk(xi)− ǔ(xi) <
1

n
.

This completes the proof of Lemma 6.3. �

Under (H1)-(H3), by the definitions of T±t , we have (see [21, Proposition 2.4] for
details)

Proposition 6.4.

(1) For ϕ1 and ϕ2 ∈ C(M), if ϕ1(x) < ϕ2(x) for all x ∈ M , we have T−t ϕ1(x) <
T−t ϕ2(x) and T+

t ϕ1(x) < T+
t ϕ2(x) for all (x, t) ∈M × (0,+∞).

(2) Given any ϕ and ψ ∈ C(M), we have ‖T−t ϕ−T
−
t ψ‖∞ ≤ ‖ϕ−ψ‖∞ and ‖T+

t ϕ−
T+
t ψ‖∞ ≤ eλt‖ϕ− ψ‖∞ for all t > 0.

Proof of Proposition 6.2. If Z is a finite set, the proof is finished. We then consider Z
being a infinite set. By Proposition 3.6, we need to show ǔ is a fixed point of T+

t . By
Proposition 6.4 (2), we have

‖T+
t un − T

+
t ǔ‖∞ ≤ eλt‖un − ǔ‖∞,

By Lemma 6.3, the right hand side tends to zero. Then for a given t > 0,

T+
t ǔ = lim

n→+∞
T+
t un = lim

n→+∞
un = ǔ,

which implies ǔ ∈ S+ by Proposition 3.6. �

Next, we prove Item (2) of Theorem 2. Let us recall Zmax denotes a maximal totally
ordered subset of S+, u− denotes the unique backward weak KAM solution, and u∗

denotes the minimal element in Zmax, i.e.

u∗(x) := inf
v+∈Zmax

v+(x).

Lemma 6.5. Denote

Iu∗ := {x ∈M | u∗(x) = u−(x)}.
Then Iu∗ 6= ∅ and for all v+ ∈ Zmax, v+ = u− on Iu∗.

Proof. By Proposition 6.2, u∗ ∈ S+. By Proposition 3.7 and the uniqueness of u−,

u−(x) = lim
t→+∞

T−t u
∗(x).

According to Proposition 3.9, Iu∗ 6= ∅. Note that for all v+ ∈ Zmax,

u∗ ≤ v+ ≤ u−, on M.

Then v+(x) = u−(x) for all x ∈ Iu∗ . �
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Lemma 6.6. Define m(·, ·) : M ×M → R by

m(x, y) := lim sup
t→+∞

hy,u−(y)(x, t), ∀x, y ∈M.

Then for each y ∈M , m(·, y) ∈ S+.

Proof. Fix y ∈ M . By [22, Lemma 1(i)], hy,u−(y)(·, ·) is uniformly bounded on M ×
[δ,+∞) for any δ > 0. Thus, there exists a constant K > 0 independent of t such that
for t > δ and each x ∈M ,

|hy,u−(y)(x, t)| ≤ K.
Note that for any t > 2δ, we have∣∣∣hy,u−(y)(x, t)− hy,u−(y)(x′, t)

∣∣∣
=

∣∣∣∣sup
z∈M

hz,h
y,u−(y)(z,t−δ)(x, δ)− sup

z∈M
hz,h

y,u−(y)(z,t−δ)(x′, δ)

∣∣∣∣
≤ sup
z∈M

∣∣∣hz,hy,u−(y)(z,t−δ)(x, δ)− hz,h
y,u−(y)(z,t−δ)(x′, δ)

∣∣∣ .
Since h·,·(·, δ) is uniformly Lipschitz on M × [−K,K]×M with some Lipschitz constant
denoted by ι, then∣∣∣hy,u−(y)(x, t)− hy,u−(y)(x′, t)

∣∣∣ ≤ ι dist(x, x′), ∀t > 2δ.

It follows that the family {hy,u−(y)(x, t)}t>2δ is equi-Lipschitz continuous with respect to
x. Thus, m(x, y) is well defined. Note that for a given t > 0, the Lax-Oleinik semigroup
T+
t satisfies

‖T+
t ϕ− T

+
t ψ‖∞ ≤ eλt‖ϕ− ψ‖∞,

for any ϕ,ψ ∈ C(M,R). Note that T+
t commutes with lim sup. It follows that for a

given t ≥ 0,

T+
t m(x, y) = lim sup

s→+∞
T+
t h

y,u−(y)(x, s) = lim sup
s→+∞

hy,u−(y)(x, s+ t) = m(x, y),

which implies m(·, y) ∈ S+. �

Let us recall V = π∗Ṽ, where Ṽ denotes the set of (x, p, u) ∈ T ∗M × R, for which
there exists a strongly static orbit

(x(·), p(·), u(·)) : R→ T ∗M × R

passing through (x, p, u).

Lemma 6.7. Given y ∈ V, we have

inf
v+(y)=u−(y)

v+∈S+

v+(x) = m(x, y), ∀x ∈M. (6.3)

Proof. By the definition of V, there exists a strongly static curve

(x(·), u(·)) : R→M × R

such that x(0) = y. Since V ⊆ A, then u(t) = u−(x(t)) for all t ∈ R. In particular,
u(0) = u−(y). It follows from Proposition 5.1 that

u−(y) = u(0) = lim sup
s→+∞

hx(0),u(0)(x(0), s) = lim sup
s→+∞

hy,u−(y)(y, s) = m(y, y),
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which together with m(·, y) ∈ S+ implies

m(x, y) ≥ inf
v+(y)=u−(y)

v+∈S+

v+(x).

On the other hand, we have

v+(x) = T+
t v+(x) ≥ sup

t>0
hy,v+(y)(x, t)

= sup
t>0

hy,u−(y)(x, t) ≥ lim sup
t→+∞

hy,u−(y)(x, t) = m(x, y).

It means
inf

v+(y)=u−(y)
v+∈S+

v+(x) ≥ m(x, y).

This completes the proof of Lemma 6.7. �

Remark 6.8. In general contact cases,

(1) m(x, y) is Lipschitz continuous in x, but it may not be continuous in y;
(2) the equality (6.3) may not hold for y ∈M\V.

We still consider the Hamilton-Jacobi equation in Proposition 2.11:

λu+
1

2
|Du|2 +Du · V (x) = 0, x ∈ T, (6.4)

where 0 < λ < |V ′(x2)|. By definition, for y0 ∈ T,

m(y0, y0) = − lim inf
τ→+∞

inf
γ(0)=γ(τ)=y0

∫ τ

0
eλs

1

2
|γ̇(s)− V (γ(s))|2ds.

By Lemma 6.6, m(·, y0) ∈ S+. We choose a point y0 6= x1, x2. It is not difficult to
verify m(y0, y0) < 0. It follows that m(x, y0) = w+(x) for all x ∈ T. On the other hand,
by Lemma 5.1(2), m(x2, x2) = 0. Thus, m(x, x2) = u+(x) ≡ 0 for all x ∈ T. Then

lim
y→x2
y 6=x2

m(y0, y) = w+(y0) < 0 = m(y0, x2),

which means m(x, y) is not continuous at y = x2. More precisely, for each x ∈ T,
m(x, y) is continuous at y 6= x2 and it is upper semicontinuous at y = x2. This verifies
Item (1).

For Item (2), we already know that if y0 6= x1, x2, then m(x, y0) = w+(x) for all
x ∈ T. Then

inf
v+(y0)=u−(y0)

v+∈S+

v+(y0) = u+(y0) = 0 > w+(y0) = m(y0, y0).

Thus, the equality (6.3) does not hold.

Proof of Theorem 2(2). By the definition of the Mather set, we have

∅ 6= M̃u∗ := M̃ ∩Gu∗ ⊆ Ĩu∗ .
Based on Section 5.1, the recurrent points are dense in M̃u∗ . Let (x0, p0, u0) ∈ M̃u∗ be

a recurrent point. According to Section 5.2, (x0, p0, u0) ∈ Ṽ. Then one can choose

x0 ∈M∩ V ∩ Iu∗ , (6.5)

such that
inf

v+(x0)=u−(x0)
v+∈S+

v+(x) = m(x, x0), ∀x ∈M.
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It remains to prove

inf
Zmax

v+(x) = inf
v+(x0)=u−(x0)

v+∈S+

v+(x).

By (6.5), u∗(x0) = u−(x0). It follows that for all v+ ∈ Zmax, v+(x0) = u−(x0). Then

inf
Zmax

v+(x) ≥ inf
v+(x0)=u−(x0)

v+∈S+

v+(x).

On the other hand, by Lemma 6.6 and Lemma 6.7,

u(x) := inf
v+(x0)=u−(x0)

v+∈S+

v+(x) ∈ S+.

Due to the maximality of the set Zmax, we have u ∈ Zmax. It implies

inf
Zmax

v+(x) ≤ inf
v+(x0)=u−(x0)

v+∈S+

v+(x).

This completes the proof of Theorem 2(2). �

6.2. Existence of transitive orbits. We prove Theorem 3 in this part. By Lemma
4.2, we only need to consider the case with x2 ∈ V. By Proposition 6.6 and Proposition
6.7, the function

m(·, x2) = lim sup
t→+∞

hx2,u−(x2)(·, t)

is the minimal forward weak KAM solution of (HJ) equaling to u−(x2) at x2. By
assumption, for each v+ ∈ S+, v+(x2) = u−(x2) implies v+(x1) = u−(x1). Then

lim sup
t→+∞

hx2,u−(x2)(x1, t) = u−(x1). (6.6)

Note that for each (x0, u0) ∈M × R,

lim
t→+∞

hx0,u0(x, t) = u−(x).

It yields

lim
t→+∞

hx1,u1(x2, t) = u−(x2)

Note that u−(x1) = u1, u−(x2) = u2. Theorem 3 follows from Lemma 4.1. �
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Appendix A. Auxiliary results

For the sake of generality, we will prove all of the results in this appendix under (H1),
(H2) and |∂H∂u | ≤ λ instead of (H3).
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A.1. Strong staticity and one-sided semi-staticity. In this part, we prove Propo-
sition 4.4. First of all, we provide a way to construct “long” minimizers from “short”
ones, which is a direct consequence of the Markov and monotonicity properties of the
action functions.

Proposition A.1. Given any x, y and z ∈M , u1, u2 and u3 ∈ R, t, s > 0, let

hx,u1(y, t) = u2, hy,u2(z, s) = hx,u1(z, t+ s) = u3

(resp. hz,u3(y, s) = u2, hy,u2(x, t) = hz,u3(x, t+ s) = u1).

Let γ1 : [0, t] → M be a minimizer of hx,u1(y, t) (resp. hy,u2(x, t)) and γ2 : [0, s] → M
be a minimizer of hy,u2(z, s) (resp. hz,u3(y, s)). Then

γ(σ) :=

{
γ1(σ), σ ∈ [0, t],
γ2(σ − t), σ ∈ [t, t+ s],

is a minimizer of hx,u1(z, t+ s) (resp. hz,u3(x, t+ s)).

Proof of Proposition 4.4. We only need to prove if (x, p0, u) ∈ Ṽ, (x, p+, u) ∈ Ñ+, then
p0 = p+. The other case is similar. For each t ∈ R, let

(x1(t), p1(t), u1(t)) = Φt(x, p0, u).

For each t ≥ 0, let

(x2(t), p2(t), u2(t)) = Φt(x, p+, u).

We need to prove if a globally minimizing curve (x1(·), u1(·)) : R→M ×R satisfies for
each t1, t2 ∈ R,

u1(t2) = inf
s>0

hx1(t1),u1(t1)(x1(t2), s), (A.1)

then p0 = p+.
Since (x, p+, u) ∈ Ñ+, then (x2(·), u2(·)) : R+ → M × R is positively semi-static.

Fixing δ > 0, by the Markov property, we have

hx1(−δ),u1(−δ)(x2(δ), 2δ) = inf
y∈M

hy,hx1(−δ),u1(−δ)(y,δ)
(x2(δ), δ).

Note that

hx1(−δ),u1(−δ)(x, δ) = u, hx,u(x2(δ), δ) = u2(δ).

It follows that

hx1(−δ),u1(−δ)(x2(δ), 2δ) ≤ hx,u(x2(δ), δ).

We assert that the inequality above is indeed an equality. If the assertion is true, then
by Proposition A.1, the curve defined by

γ(σ) :=

{
x1(σ − δ), σ ∈ [0, δ],
x2(σ − δ), σ ∈ [δ, 2δ],

is a minimizer of hx1(−δ),u1(−δ)(x2(δ), 2δ) and it is of class C1. Thus,

p0 =
∂L

∂ẋ
(x, γ̇(0), 0) = p+.

It remains to verify the assertion. By contradiction, we assume that there exists
∆ > 0 such that

hx1(−δ),u1(−δ)(x2(δ), 2δ) = hx,u(x2(δ), δ)−∆.

By (A.1), for each ε > 0, one can find s0 > 0 such that

|hx,u(x1(−δ), s0)− u1(−δ)| ≤ ε.
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From the Lipschitz continuity of hx0,u0(x, t) w.r.t. u0,

|hx1(−δ),hx,u(x1(−δ),s0)(x2(δ), 2δ)− hx1(−δ),u1(−δ)(x2(δ), 2δ)| ≤ kε,
where k denotes the Lipschitz constant of hx0,u0(x, t) w.r.t. u0. It follows from the

definition of Ñ+ that

u2(δ) = inf
τ>0

hx,u(x2(δ), τ),

≤ hx,u(x2(δ), s0 + 2δ),

≤ hx1(−δ),hx,u(x1(−δ),s0)(x2(δ), 2δ),

≤ hx1(−δ),u1(−δ)(x2(δ), 2δ) + kε,

= hx,u(x2(δ), δ)−∆ + kε.

Note that ∆, k are constants independent of ε. Taking ε small enough, we have

u2(δ) ≤ hx,u(x2(δ), δ)− ∆

2
= u2(δ)− ∆

2
,

which is a contradiction. This completes the proof of Proposition 4.4.

A.2. Lipschitz continuity of Mañé potentials. Let (x(·), u(·)) : R → M × R be
a semi-static curve. Fixing τ ∈ R, we consider two kinds of the Mañé potentials as
follows:

Ǩτ (x) := inf
s>0

hx(τ),u(τ)(x, s), K̂τ (x) := sup
s>0

hx(τ),u(τ)(x, s).

In this part, we will prove

Proposition A.2. Given τ ∈ R, let U be an open set containing x(τ). Then both Ǩτ (x)

and K̂τ (x) are uniformly Lipschitz continuous with respect to x ∈M\U .

We only need to prove this proposition for Ǩτ (x), from which the Lipschitz continuity

of K̂τ (x) can be obtained by a similar way.

Lemma A.3. Let K be a compact subset of M and u0 ∈ R. Then for any x0 ∈ M\K,
we have limt→0+ hx0,u0(x, t) = +∞ uniformly in x ∈ K.

Proof. Given (x, t) ∈ K × (0,+∞), let Γtx0,x be the set of the minimizers of hx0,u0(x, t).

Namely, for each γ : [0, t]→M contained in Γtx0,x, we have γ(0) = x0, γ(t) = x and

hx0,u0(x, t) = u0 +

∫ t

0
L
(
γ(τ), γ̇(τ), hx0,u0(γ(τ), τ)

)
dτ. (A.2)

Let
gx(t) := inf

γ∈Γtx0,x
sup

0≤s≤t
hx0,u0(γ(s), s).

We proceed the remaining proof by two steps.

Step 1: we show limt→0+ gx(t) = +∞, uniformly in x ∈ K.

By contradiction, we assume there exist xn ∈ K and γn ∈ Γtnx0,xn with tn → 0 as n→ +∞
such that

hx0,u0(γn(s), s) < C1, ∀s ∈ [0, tn], (A.3)

where C1 is a constant independent of n. Let A := inf(x,ẋ)∈TM L(x, ẋ, u0). Given T0 > 0,
let

C2 := |u0|eλT0 +
|A− λu0|

λ

(
eλT0 − 1

)
+ 1,
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where λ is a Lipschitz constant of H(x, p, u) w.r.t. u.

Claim. For any (x, t) ∈M × (0, T0], hx0,u0(x, t) > −C2.

Proof of the claim. We assume by contradiction that there exists (x1, t1) ∈M × (0, T0]
such that hx0,u0(x1, t1) ≤ −C2. Let γ ∈ Γt1x0,x1 . Denote u(s) := hx0,u0(γ(s), s) for s ∈
[0, t1]. Note that u0 ≥ −C2. Since u(s) is continuous on (0, t1], and lims→0+ u(s) = u0,
there exists a closed interval [s1, s2] ⊆ [0, t1] such that

u(s1) = u0, u(s2) = −C2, −C2 ≤ u(s) ≤ u0, ∀s ∈ [s1, s2].

Since γ satisfies (A.2), based on the variational principle (see Proposition 2.2),

u̇(s) = L(γ(s), γ̇(s), u(s)) ≥ A+ λ(u(s)− u0), ∀s ∈ [s1, s2].

A direct calculation yields for any s ∈ [s1, s2],

u(s) ≥ u0e
λ(s−s1) +

A− λu0

λ

(
eλ(s−s1) − 1

)
≥ −|u0|eλT0 −

|A− λu0|
λ

(
eλT0 − 1

)
> −C2.

This contradicts u(s2) = −C2. Then the claim is true.

For n large enough, we have tn < T0. Let C := max{C1, C2}. Based on (A.3) and
the assertion above,

|hx0,u0(γn(s), s)| ≤ C, ∀s ∈ [0, tn]. (A.4)

Let δ := dist(x0,K), where dist(·, ·) denotes a distance induced by the Riemannian
metric on M . Let

B :=
C + 1 + |u0|

δ
.

Since L(x, ẋ, 0) is superlinear in ẋ, then there is D := D(B) ∈ R such that L(x, ẋ, 0) ≥
B‖ẋ‖x −D for all (x, ẋ) ∈ TM . Since tn → 0+ as n→ +∞, for n large enough, we get
|(D + λC)tn| < 1. Note that

hx0,u0(xn, tn) = u0 +

∫ tn

0
L(γn(s), γ̇n(s), hx0,u0(γn(s), s))ds

≥ u0 +

∫ tn

0
L(γn(s), γ̇n(s), 0)ds− λ

∫ tn

0
|hx0,u0(γn(s), s)|ds

≥ u0 +Bδ −Dtn − λCtn
= u0 +Bδ − (D + λC)tn

> C,

which contradicts (A.4). Therefore, limt→0+ gx(t) = +∞, uniformly in x ∈ K.

Step 2: we show limt→0+ hx0,u0(x, t) = +∞, uniformly for all x ∈ K.

From Step 1, for any N > 0, there is tN > 0 such that gx(t) > N for t < tN and all
x ∈ K. Let γ ∈ Γtx0,x. Note that hx0,u0(γ(s), s)→ u0 as s→ 0+. One can find s0 ∈ [0, t]
such that hx0,u0(γ(s0), s0) = N .

Note that

hx0,u0(x, t) = hx0,u0(γ(s0), s0) +

∫ t

s0

L(γ(s), γ̇(s), hx0,u0(γ(s), s))ds.
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Similar to the argument above, for t < tN , we have

hx0,u0(x, t) ≥ N +

∫ t

s0

L(γ(s), γ̇(s), 0)ds− λ
∫ t

s0

|hx0,u0(γ(s), s)|ds

≥ N +Bδ − (D + λC)(t− s0),

Let t → 0+. Then t − s0 → 0+. Moreover, hx0,u0(x, t) > N for each x ∈ K, which
completes the proof. �

By [23, Lemma C.1], we have

Lemma A.4. Let (x(·), u(·)) : R→M×R be a semi-static curve. Then for each δ > 0,

• Uniform Boundedness: there exists a constant K > 0 independent of t such that
for t > δ and each x ∈M , s ∈ R,

|hx(s),u(s)(x, t)| ≤ K, |hx(s),u(s)(x, t)| ≤ K;

• Equi-Lipschitz Continuity: there exists a constant κ > 0 independent of t such
that for t > 2δ and s ∈ R, both x 7→ hx(s),u(s)(x, t) and x 7→ hx(s),u(s)(x, t) are
κ-Lipschitz continuous on M .

Proof of Proposition A.2. We only need to prove this proposition for Ǩτ (x). Let U
be an open neighborhood of x(τ) and x ∈ K := M\U . By Lemma A.3, we have
limt→0+ hx(τ),u(τ)(x, t) = +∞ uniformly for x ∈ K. Thus, there exists δ > 0 independent
of x ∈ K such that

Ǩτ (x) := inf
s>0

hx(τ),u(τ)(x, s) = inf
s>δ

hx(τ),u(τ)(x, s), ∀x ∈ K.

It follows from Lemma A.4 that∣∣Ǩτ (x)− Ǩτ (y)
∣∣

=

∣∣∣∣inf
s>δ

hx(τ),u(τ)(x, s)− inf
s>δ

hx(τ),u(τ)(y, s)

∣∣∣∣
≤ sup

s>δ

∣∣hx(τ),u(τ)(x, s)− hx(τ),u(τ)(y, s)
∣∣

≤κ d(x, y).

This completes the proof. �

Appendix B. Proof of Proposition 2.11

It is clear that u− ≡ 0 is the unique element in S−, and u+ ≡ 0 ∈ S+.

B.1. On Item (i). The contact Hamilton equation reads ẋ = p+ V (x),
ṗ = −pV ′(x)− λp,
u̇ = p(p+ V (x))−H(x, p, u).

(B.1)

Denote the solution of (B.1) by (x(t), p(t), u(t)).
A direct calculation shows

dH

dt
= −λH(x(t), p(t), u(t)).

Thus, we only need to consider the dynamics on zero energy level set

E := {(x, p, u) ∈ T ∗T× R | H(x, p, u) = 0}.
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To verify Item (i), it suffices to consider the linearization of (B.1) in a neighborhood of
(x2, 0) ∈ T ∗T. It is formulated as[

ẋ
ṗ

]
=

[
V ′(x2) 1

0 −(V ′(x2) + λ)

] [
x− x2

p

]
. (B.2)

By the assumptions on V (x), Item (i) holds.

B.2. On Item (ii). This item was proved by [23, Proposition 1]. We omit it.

B.3. On Item (iii). To fix the notations, we use Dv+ to denote the set of differentiable
points of v+. For each v+ ∈ S+, we know that it is semiconvex with linear modulus
(see [3, Theorem 5.3.6]). Moreover, Dv+ has full Lebesgue measure on T. Denote

M̌ := Π∗M̃, where Π∗ : T ∗T × R → T ∗T. Namely, M̌ denotes the projection of the
Mather set M̃ to T ∗T. Let Φ̌t := Π∗Φt.

The following lemma is from [7, Proposition 4.5].

Lemma B.1. Let us consider

λu+ Ȟ(x, dxu) = c(Ȟ) in T, (B.3)

where Ȟ : T ∗T → R is a C3–Hamiltonian, satisfying Tonelli assumptions and T is a
flat circle. Let (x0, 0) ∈ M̌ be a saddle point for the discounted flow generated by{

ẋ = ∂Ȟ
∂p (x, p),

ṗ = −∂Ȟ
∂x (x, p)− λp.

(DH)

Given v+ ∈ S+ with v+(x0) = u−(x0), let x̄1, x̄2 be two differentiable points of v+ with
x0 ∈ (x̄1, x̄2). Denote p̄i := dx̄iv+ with i = 1, 2. If

(x0, 0) ∈ ω(x̄1, p̄1) ∩ ω(x̄2, p̄2),

where ω(x̄i, p̄i) denotes the ω-limit set of (x̄i, p̄i). Then there exists δ := δ(v+) > 0 such
that dxv+ exists for all x ∈ [x0 − δ, x0 + δ], and the set

{(x, dxv+) | x ∈ [x0 − δ, x0 + δ]}
coincides with the local stable submanifold of (x0, 0).

Next, we prove Item (iii). Note that u− ≡ 0 is the classical solution. Then u+ ≡ 0
is the maximal forward weak KAM solution. By [23, Proposition 10], if the forward

weak KAM solution is unique, then S̃s = Ã. It follows from Proposition 2.11(ii) that
there exists v+ ∈ S+ different from u+. Thus, v+ ≤ 0 and there exists x0 ∈ T such that
v+(x0) < 0. Consider

I := {x ∈ T | v+(x) = 0}.
Then I is a compact invariant set by π∗Φt, where π∗ : T ∗T × R → T denotes the
standard projection. Denote a fundamental domain of T by [x1, x1 + 1). Consequently,
there are several possibilities for I restricting on [x1, x1 + 1):

{x1}, {x2}, {x1, x2}, [x1, x2], [x2, x1 + 1) ∪ {x1}, [x1, x1 + 1). (B.4)

The remaining proof is divided into two steps.

Step 1. For each v+ ∈ S+, v+(x2) < 0.
We assert that if v+(x2) = 0, then v+ ≡ u+ = 0. In fact, by (B.4), it suffices to show
that there exists ε > 0, such that v+ = 0 on [x2 − ε, x2 + ε]. By contradiction, we
assume there exists x̄ ∈ Dv+ ∩ [x2 − 1

2ε, x2), such that v+(x̄) < 0. Let p̄ := dx̄v+.
29



Let (x(t), p(t)) := Φ̌t(x̄, p̄) for all t ≥ 0. Then one can find t0 ≥ 0 such that x(t0) ∈
[x2 − ε, x2) and dxv exists at x = x(t0) with dx(t0)v+ > 0. Note that

ẋ(t0) = p(t0) + V (x(t0)) = dx(t0)v+ + V (x(t0)).

By the definition of V (x), V (x(t0)) > 0. It follows that ẋ(t0) > 0. Thus, (x2, 0) ∈
ω(x̄, p̄). By (B.2), if λ < |V ′(x2)|, (x2, 0) is a saddle point in M̌. By Lemma B.1,
v+ = 0 on [x2 − ε, 0]. Similarly, we have v+ = 0 on [x2 − ε, x2 + ε].

By the assertion above, we have v+(x2) < 0 and I = {x1}.
Step 2. The forward weak KAM solution v+ different from u+ ≡ 0 is unique.
Let x̄ ∈ Dv+ ∩ (x1, x2). By Proposition 2.11(ii),

M̃ = {(x1, 0, 0), (x2, 0, 0)} , (B.5)

which together with v+(x2) < 0 implies (x1, 0) ∈ ω(x̄, p̄). In fact, if (x1, 0) /∈ ω(x̄, p̄),
then (x2, 0) ∈ ω(x̄, p̄). Moreover, v+(x(t))→ v+(x2) < 0 as t→ +∞, which contradicts
(B.5). By (B.2), (x1, 0) ∈ M̌ is a saddle point. By Lemma B.1, for any v+ ∈ S+, there
exists δ := δ(v+) > 0 such that dxv+ exists for all x ∈ [x1 − δ, x1 + δ], and the set

{(x, dxv+) | x ∈ [x1 − δ, x1 + δ]}

coincides with the local stable submanifold of (x1, 0).
By contradiction, we assume there exists another v̄+ that is different from both u+

and v+. From the discussion above, we have v̄+(x1) = v+(x1) = 0 and one can find
δ′ > 0 such that dxv̄+ = dxv+ on [x1−δ′, x1+δ′]. That yields v̄+ = v+ on [x1−δ′, x1+δ′].
By [7, Proposition 4], v̄+ = v+ on T. Therefore, the forward weak KAM solution v+

different from u+ is unique.

B.4. On Item (iv). To verify Item (iv), we only need to construct an example to show
that for λ large enough, S+ contains more than two elements. We choose λ = 3 and
V (x) = sinx. Then x1 = 0, x2 = π. Let

ϕ(x) := cosx− 1, ψ(x) := − cosx− 1.

A direct calculation shows that

3ϕ+
1

2
|Dϕ|2 +Dϕ · sinx ≤ 0, 3ψ +

1

2
|Dψ|2 +Dψ · sinx ≤ 0,

which means both ϕ and ψ are viscosity subsolutions of

3u(x) +
1

2
|Du|2 +Du · sin(x) = 0, x ∈ T. (B.6)

Then

T+
t ϕ ≤ ϕ, T+

t ψ ≤ ψ. (B.7)

Note that ϕ,ψ ≤ 0 and ϕ(0) = ψ(π) = 0 = u−(0). By [22, Proposition 13], both T+
t ϕ

and T+
t ψ converge as t→ +∞. Let

u1(x) := lim
t→+∞

T+
t ϕ, u2(x) := lim

t→+∞
T+
t ψ.

Then u1, u2 ∈ S+. By (B.7) and the constructions of ϕ and ψ, we know that u1, u2 and
u+ ≡ 0 are different from each other.

30



References

[1] V. I. Arnold. Mathematical Methods of Classical Mechanics, 2nd ed., Springer, 1989.
[2] P. Cannarsa, W. Cheng, L. Jin, K. Wang and J. Yan, Herglotz’ variational principle and

Lax-Oleinik evolution, J. Math. Pures Appl. 141 (2020), 99–136.
[3] P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and

optimal control. Vol. 58. Springer, 2004.
[4] G. Contreras, J. Delgado and R. Iturriaga, Lagrangian flows: the dynamics of globally

minimizing orbits. II, Bol. Soc. Brasil. Math. 28 (1997), 155–196.
[5] G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain. Lagrangian graphs, mini-
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