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ABSTRACT. By exploiting the dynamics around the Aubry set of contact Hamiltonian
systems, we provide a relation among the Mather set, the recurrent set, the strongly
static set, the Aubry set, the Mané set and the non-wandering set. Moreover, we
consider the strongly static set, as a new flow-invariant set between the Mather set
and the Aubry set, in the strictly increasing case. We show that this set plays an
essential role in the representation of certain minimal forward weak KAM solution
and the existence of transitive orbits around the Aubry set.
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1. INTRODUCTION

In [13,21], the Aubry-Mather theory was developed for conformally symplectic sys-
tems and contact Hamiltonian systems with strictly increasing dependence on the con-
tact variable u respectively. The conformally symplectic systems are closely related
to discounted Hamiltonian systems (see e.g., [6,16]), which serve as a class of typical
examples for more general contact cases. In [23], the Aubry-Mather theory was fur-
ther developed for contact Hamiltonian systems with non-decreasing dependence on u.
More information on the Aubry set was founded, such as the comparison property, graph
property and a partially ordered relation for the collection of all projected Aubry sets
with respect to backward weak KAM solutions. Loosely speaking, the Aubry-Mather
theory and weak KAM theory are two kinds of parallel ways to describe the global
minimizing dynamics of contact Hamiltonian systems. The former is concerned with
“orbits”, while the later focus on “weak KAM solutions”. This kind of solutions can be
viewed as certain generalization of generating functions in Hamiltonian systems. One
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can also see [1, Section 46] for a vivid description on the connection between orbits and
solutions of Hamilton-Jacobi equations.

1.1. Basic assumptions. Assume M is a connected, closed (compact without bound-
ary) and smooth Riemannian manifold. We choose, once and for all, a C*° Riemannian
metric g on M. Denote by dist(-,-) and d(-, -) the distance on M and T*M x R induced
by g respectively. C(M,R) stands for the space of continuous functions on M. || | s
denotes the supremum norm on C(M,R). |- ||, denotes a norm on TM and T, M. Let
H:T*M xR — R be a C? function satisfying

(H1) Strict converity: %QTIQJ(:E,p, u) is positive definite for all (z,p,u) € T*M x R;
(H2) Superlinearity: for every (x,u) € M x R, H(x,p,u) is superlinear in p;
(H3) Non-decreasing: there is a constant A > 0 such that for every (x,p,u) € T*M xR,

OH
<22 <\
0<—- (z,p,u) <A

We consider the contact Hamiltonian system generated by

T = %%(.I’,p,u),
p=—50(x,p,u) = Gle,p,u)p,  (2,p,u) € T*M xR, (CH)

U= %—p(m,p,u) -p— H(z,p,u).
In order to handle global dynamics, it is necessary to assume additionally
(A) Admissibility: there exists a € R such that

inf sup H(x, Du,a) = 0.
uECOO(M,]R)xE]\I/)[ (z, Du, a)
This formulation is inspired by the concept of the Mané critical value [5]. From a PDE
point of view, the assumption (A) holds true if and only if the stationary Hamilton-
Jacobi equation

H(xz,Du,u) =0, x¢€ M,

has a viscosity solution (see [18, Theorem 1.4]). If H is independent of u, this equivalence
was shown in [12].
The necessity of (A) can be shown by the following example:

H(z,p,u) = h(z,p) + g(x)u, xecT,

where T denotes a flat circle. The function g : T — R does not vanish identically and
satisfies 0 < g(z) < A. If g(z) > 0 for all x € T, based on the compactness of T,
g(x) > 6 for certain positive constant §. In this case, h(z, Du) + g(z)u = 0 has the
unique viscosity solution. Namely, (A) always holds. If there exist zy € T such that
g(xo) = 0, then (A) may not hold. For example, consider the Hamilton-Jacobi equation

1
§|Du|2 +V(x)+ g(x)u = 0.

Assume V : T — R is of class C? with V(z¢) > 0 and g(zo) = 0. Then for all a € R,

inf  sup {
ue(C'® (T,R) zeT

. 1 9
> —
- uecloE{T,R) {2 [Dul™+ V(o) + g(a:o)a}

=V(xg) > 0.

31Du? + V() + g(a)a



Therefore, (A) is necessary to be assumed.

1.2. Aims, obstructions and contributions. In this paper, we continue to develop
the Aubry-Mather theory and weak KAM theory for contact Hamiltonian systems under
(H1)-(H3) and (A). It is well known that the Aubry set plays a central role in both
theories for classical Hamiltonian systems. In [15], R. Mané obtained some properties
of the Aubry set from the perspective of topological dynamics. Inspired by this work,
we are concerned with the following problems.

e The topological dynamics on the Aubry set, such as the recurrence property,
the non-wandering property and their relations to the Mather set and Mafié set.

e The representation of weak KAM solutions, and the interplay between weak
KAM solutions and the dynamics around the Aubry set.

Under (H1)-(H3) and (A), the backward and forward weak KAM solutions are not one-
to-one correspondent like classical cases (i.e. 9,H = 0). We have to deal with some
new issues as follows.

(1) In classical cases, the Aubry set is chain-recurrent (see [4,15]). Even in strictly
increasing contact cases, the Aubry set may contain non-chain recurrent points
(see Proposition 2.11(i)(ii) below).

(2) In strictly increasing cases, the backward weak KAM solution is always unique.
Unfortunately, the dynamics reflected by the backward weak KAM solution is
too rough. Thus, one has to exploit the structure of the set of forward weak
KAM solutions to reveal more dynamical information. However, the structure
of this set is rather complicated (see Proposition 2.11(iii)(iv) below).

(3) The complicated structure of the set of weak KAM solutions causes certain
difficulties to show the the interplay between weak KAM solutions and the
dynamics around the Aubry set. For example, even if 9,H vanishes at only
one point, some new phenomena from both dynamical and PDE aspects would
appear. More precisely, we consider

1
§|Du\2 + f(x)u=0, zeT,

where f: T — R is a C? function with f(z¢) = 0, f(x) > 0 for all z € T\{zo}.
It is clear that w = 0 is a viscosity solution. Besides, there exists an uncountable
family of nontrivial viscosity solutions {v; };cr and the definition of the Aubry set
essentially depends on v; (see [23, Proposition 1.11] for more details). Compara-
bly, in classical cases, the definition of the Aubry set is independent of viscosity
solutions.

Corresponding to the issues above, we summarize the main contributions in this paper
as follows:

e Regarding Item (1), we find the Aubry set is too large to characterize the dy-
namics with recurrent or non-wandering property. Thus, we introduce so called
the strongly static set, which is a new flow invariant subset of the Aubry set.
We prove that the strongly static set is always non-wandering. Moreover, in
order to locate this set in a series of action minimizing invariant sets, we prove
an inclusion relation among the Mather set, the Aubry set, the Mafné set, the
recurrent points and the non-wandering points. For the definitions of the first
three sets, see Section 2.1.2 below. The latter two sets are the basic concepts
in the classical theory of topological dynamical systems. This result is given by
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Theorem 1. It is worth mentioning that the strongly static set always coincides
with the Aubry set in the classical case.

e Regarding Item (2), we focus on the structure of the set of forward weak KAM
solutions in the strictly increasing case. The existence of the mazimal element
in this set was shown in [21]. Unfortunately, the minimal forward weak KAM
solution may not exist in the sense of total order. For example,

1
u+§]Du\2:O, zeT, (1.1)
where T := (—%, %] denotes the flat unit circle. Let S1 be the set of all forward
weak KAM solutions of (1.1). It is not difficult to see
_ !
v(z) = Iglflv+(l') =-3

which is not a forward weak KAM solution of (1.1). Based on Zorn’s lemma, we
prove the existence of the minimal forward weak KAM solution in a partially
ordered sense. Moreover, we show that the strongly static set plays an essential
role in the representation of the minimal forward weak KAM solution. This
result is given by Theorem 2. Loosely speaking, in the strictly increasing cases,
the Aubry set is only related to the unique backward weak KAM solution and
the maximal one. The strongly static set is necessarily involved in order to
characterize the property of forward weak KAM solutions except the maximal
one.

e Regarding Item (3), since the Aubry set may contain wandering points, we need
to introduce a more flexible dynamics to detect the interplay between weak
KAM solutions and the dynamics around the Aubry set. The non-wandering
property can be viewed as “neighborhood recurrence”. Thus, we consider a kind
of dynamical property that can be viewed as “neighborhood transition”. More
precisely, we introduce the following definition.

Definition 1.1 ( transitive orbit). Given X1, X2 € T*M x R, we say there is a
transitive orbit from X1 to Xo if for any neighborhoods Uy of X1 and Uy of X,
there exists an orbit that begins in Uy and later passes through Us;.

Remark 1.2. It is clear that a transitive orbit from Xy to Xs is a pseudo-orbit
with arbitrarily small jumps. In particular, there are at most two jumps of the
transitive orbit, and these jumps are only allowed to happen around the adjoining
points of X1 and Xo. Following [17, Definition 1.1.8], we write X1 ~» Xo in the
following if there is a transitive orbit from X1 to Xao. Similar to [17, Lemma
1.1.2], the relation

%(W) - {(XlaXZ) S (T*]\[ X R)2 . Xl ~ XQ}
is also closed, see the proof below Lemma 4.2 in Section 4.

Finally, we obtain a result on the interplay among weak KAM solutions, the
strongly static set and the existence of transitive orbits around the Aubry set.
This result is given by Theorem 3.

2. STATEMENT OF MAIN RESULTS

To state the main results (Theorem 1, Theorem 2 and Theorem 3 below) in a precise
way, we need to prepare some notions and notations. They mainly come from [19-23].
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2.1. Notions and notations.

2.1.1. Weak KAM solutions. Let L : TM xR — R be the contact Lagrangian associated
to H(z,p,u) via

L(z,&,u) = sup {(&,p)s — H(x,p,u)},
peTF M

where (-,-), represents the canonical pairing between the tangent and cotangent space
at x € M. Since H satisfies (H1), (H2) and (H3), then L(x, 2, u) satisfies
(L1) Strict convezity: %(l’,i, u) is positive definite for all (z,&,u) € TM x R;
(L2) Superlinearity: for every (z,u) € M x R, L(x, 4, ) is superlinear in &;
(L3) Non-increasing: there is a constant A > 0 such that for every (z, %, u) € TM xR,

—A< a—L(x,:i:,u) <0

~ Ou -
Following Fathi [8], one can define weak KAM solutions of
H(z,Du,u) =0, x € M. (HJ)

It can be proved that the backward weak KAM solutions of (HJ) are equivalent to the
viscosity solutions.

Definition 2.1. A function u_ € C(M,R) is called a backward weak KAM solution of
(HJ) if

(i) for each continuous piecewise C* curve v : [t1,ta] — M, we have

to
u-((t2) —u-G(0)) < [ L6(5)3(5)u- (0 (5)ds
t1
(ii) for each x € M, there exists a C* curve v : (—00,0] — M with v(0) = x such
that

0
U(x)—U(V(t))Z/t L(y(s),¥(s), u-(y(s)))ds, Vvt <O0. (2.1)

Similarly, a function uy € C(M,R) is called a forward weak KAM solution of (HJ)
if it satisfies (i) and for each x € M, there exists a C* curve 7 : [0,4+00) — M with
7v(0) = x such that

mMW—w@zALwﬂﬂﬁmMWW,W>O (2.2)

We denote by S— (resp. Sy ) the set of backward (resp. forward) weak KAM solutions
of equation (HJ).

2.1.2. Action minimizing objects. The definitions of the action minimizing invariant sets
are based on the variational principle of contact Hamiltonian systems. See [19, Theorem
A] for the following result, which holds under (H1), (H2) and \%—{ﬂ < )\ instead of (H3).

Proposition 2.2. For any given xg € M, ug € R, there exists a continuous function
hao o (2, 1) defined on M x (0,+00) satisfying

t

g uo (25 1) = uo + W(gl)ﬂf ; L(y(7), (1), haguo (V(7), 7)) dT, (2.3)
=x0
y(t)==



where the infimum is taken among Lipschitz continuous curves v : [0,t] — M. Moreover,
the infimum in (2.3) is achieved. Let ~y be a Lipschitz curve achieving the infimum and
oL )
z(s) :=(5), u(s) := haouo (7(5), 8), p(s) := 5 (7(s),7(s), uls)).
Then (x(-),p(+),u(:)) : [0,t] — T*M x R satisfies equations (CH) with x(0) = o,
z(t) =z and
li = up.
g () = o
We associate to hy ., (2,t) another action function ~A*0"0(x,t), which is also defined
implicitly by
t
h*H0 (2, t) = uo — (i?f L(y(7),3(7), h** (y(7), ¢ — 7))dT, (2.4)
Y(t)=zo0 Jo
V(0)==
where the infimum is taken among Lipschitz continuous curves v : [0,t] — M.
Based on the action functions, one can define action minimizing curves.

Definition 2.3 (Globally minimizing curves). A curve (z(-),u(-)) : R = M x R is
called globally minimizing, if it is locally Lipschitz and for each t1, to € R with t1 < to,
there holds

u(t2) = hx(tl),u(tl)(x(tQ)a t? - tl) (25)

The positively minimizing curves (resp. negatively minimizing curves) can be defined
in a similar manner. We say positively (resp. negatively), we mean the curve is defined
on R (resp. R_), and (2.5) holds for t1, to € Ry (resp. € R_). If a curve (z(-),u(+)) :
R — M x R is global minimizing, then = : R — M is of class C'. Let

OL _
plt) = O a(t), (1), u(t), b€ R (2.6)
Then (z(-),p(+),u(:)) : R — T*M x R satisfies equations (CH) (see [21, Propostion 3.1]).
Following Mané [15], the notion of static and semi-static curves for contact Hamiltonian

systems were introduced in [21] and [23] respectively.

Definition 2.4 (Semi-static curves). A curve (z(-),u(-)) : R — M x R is called semi-
static, if it is globally minimizing and for each t1 < to € R, there holds

ultz) = 10f Ao ey (i) (2(22), 5)- (2.7)

Definition 2.5 (Semi-static orbits). If a curve (z(-),u(-)) : R = M x R is semi-static ,
then (z(-),p(-),u(-)) : R — T*M x R satisfies equations (CH), where p(-) is determined
by (2.6). We call it a semi-static orbit.

The positively (resp. negatively) semi-static orbits can be also defined in a similar
manner. Denote the flow generated by (CH) by ®;. We define some flow invariant sets
as follows.

Definition 2.6 (Mané set). We call the set of all semi-static orbits the Mané set for
H, denoted by N.

We call N := 7*N the projected Mané set. We denote, once and for all
7 T*"M xR — M.

We define Nt (resp. N7) as the set of all positively (resp. negatively) semi-static
orbits.
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Definition 2.7 (Static curves). A curve (z(-),u(-)) : R = M X R is called static, if it
is globally minimizing and for each t1,ts € R, there holds

u(tQ) = ;I>1f(; hw(tl),u(t1)(x(t2)a 5) (28)

A static orbit is defined as (x(-),p(),u(:)) : R — T*M x R, where p(+) is determined by
(2.6).

Definition 2.8 (Aubry set). We call the set of all static orbits the Aubry set for H,
denoted by A. The Aubry set is also called the static set.

We call A := 7*A the projected Aubry set. Inspired by Mather [14], we define a
subset of the Aubry set from a measure theoretic point of view, so called the Mather
set. Based on Proposition 3.9 below, there exist Borel ®;-invariant probability measures
supported in N, called Mather measures. Denote by 91 the set of Mather measures.
The Mather set of contact Hamiltonian systems (CH) is defined by

M =cl U supp(u) |, (2.9)
HEM

where supp(u) denotes the support of p.
The invariance of these sets above follows directly from their definitions.

2.1.3. Strongly static set. If H is independent of u, the Aubry set is chain-recurrent.
Unfortunately, it is not true in general contact settings. In order to characterize the
chain-recurrence in the Aubry set, we introduce a new flow invariant set, called strongly
static set.

Definition 2.9 (Strongly static curves). A curve (x(:),u(-)) : R = M x R is called
strongly static, if it is globally minimizing and for each t1,ts € R, there holds

u(te) = sup hx(tl)’“(tl)(:c(tg),s). (2.10)
s>0

A strongly static orbit is defined as (z(-),p(-),u(-)) : R — T*M x R, where p(-) is
determined by (2.6).

Definition 2.10 (Strongly static set).

Ss := cl({ all strongly static orbits}).
where cl(A) denotes the closure of A C T*M x R.

The differences between A and S, are shown by the following Proposition 2.11. For
the consistency, we postpone its proof in Appendix B.

Proposition 2.11. Let A > 0 and
1
H(z,p,u):= /\u—i—§|p!2+p-V(:l;)7 xeT, (E)

where T denotes a flat circle and V : T — R is a C? function which has exactly two
vanishing points x1, xe with V'(x1) > 0, V'(x2) < 0. Let S— and S+ be the set of the
backward and forward weak KAM solutions of (E) respectively. Then u_ = 0 is the
unique element in S_. Thus, uyx =0 € S1. Moreover,
(1) if A > |V'(x2)|, then the point (x2,0,0) is a sink in T*T x R;
7



(ii) for any A >0,
A={(2,0,0) [z €T}, & ={(21,0,0), (2,0,0)};

(iil) if A < [V'(z2)|, the set Sy consists of two elements uy = 0 and w4, where
wy : T — R satisfies wy(x1) =0, wi(x) <0 for each x € T\{x1};
(iv) for X large enough, S+ may contains more than two elements.

By Proposition 2.11(i)(ii), A contains non-chain recurrent points in the example (E).
Nevertheless, Ss is non-wandering. For Item (iii), we have a rough picture for Sy with
V(z) = sinx (see Figure 1).

FIGURE 1. Sy in Item (iii)

2.2. Main results. First of all, we locate the strongly static set in a series of action
minimizing invariant sets, and show its relations to the recurrence property and the
non-wandering property.

Theorem 1 (Topological dynamics around the Aubry set). Let R be the set of
recurrent points. Let §) be the set of non-wandering points. Then

DAMCNNCAR)CS, CANQ.

The closure cl(R) is called the Birkhoff center. The fact M C N'Ncl(R) follows easily
from the Poincaré recurrence theorem. To prove N N cl(R) C Ss, we need to establish
the Lipschitz continuity of the Mané potentials, whose proof is postponed to Appendix
A.2. The inclusion S; € AN Q follows from a technical lemma on transitive criterion
(see Lemma 4.1 below).

In order to show the differences of the dynamics between the classical cases and the
contact cases, we enhance the assumption (H3) by

(H3’) Strictly increasing: there is a constant A > 0 such that for every (z,p,u) €
T*M x R,
0 < 88%('%.7]9’1’&) S )\’

Under (H1), (H2), (H3’) and (A), it is well known that the set of backward weak KAM
solutions S_ consists of only one element. Consequently, the Mané set coincides with the
Aubry set (see [23, Remark 2]). However, the structure of the set of forward weak KAM
solutions S; may be rather complicated. That causes significant differences between
the Aubry set and the strongly static set, as it is shown in Proposition 2.11.

In order to deal with the other elements in S; except the maximal one. We define a

partial order in &y
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v; = vy if and only if v1(x) < ve(x) for all x € M.

Moreover, we define Z,,x a maximal totally ordered subset of S;. Namely, for any
wy € 84\ Zmax, there exist vy € Zyax and x1, 29 € M such that wy(x2) > vy (x2) and
wy(x2) < vy (x2). We will show the existence of minimal elements in S; in this sense
of partial order. Morever, we will provide a representation for the minimal element in
Zmax-

Theorem 2 (Minimal forward weak KAM solutions).

(1) The partially ordered set (S4+,=) has minimal elements.
2) For each Zn.x C Si, there exists zg € M depending on Znax, such that the
+ g
minimal element u* in Zn.x can be represented in the following two manners:

u*(z) = inf vy (@) = lim sup AU @0) (g 1),
v4(z0)=u—(20) t—+00
v ESH

where M denotes the projected Mather set and b (-,-) : M x Rx M xRy — R
is the action function defined by (2.4).

See Remark 6.8 below for a discussion on the choice of xg, from which one can see
that the strongly static set plays an essential role. By analysing more detailed structure
of S, one has

Theorem 3 (]Existence of transitive orbits). Given X := (r1,p1,u1) € A, Xy =
(x2,p2,u2) € Ss, if for each vy € Sy, vi(x2) = u_(x2) implies vy(x1) = u_(z1), then
X7 ~ Xo.

If the forward weak KAM solution is unique, A = S, (see [23, Proposition 10]). In
this case, the projected strongly static set can be characterized as follows

Ss ={r e M |u_(r) = uy(2)},

where u_ (resp. u4) denotes the unique backward (resp. forward) weak KAM solution.
From Theorem 3, we have the following corollary.

Corollary 2.12. Given any two points X1, Xo € A, if the forward weak KAM solution
is unique, then X1 ~~ Xo.

Figure 2 provides a rough picture for the dynamics around A (projected to M x R)
under the assumption of Theorem 3, where

e ['. denotes a transitive orbit from X; to Xo;
e I'L T2 denote non-wandering orbits to X1 and X5 respectively.

The rest of this paper is organized as follows. In Section 3, we recall some useful
facts, which mainly come from [21,23]. In Section 4, we prove a technical lemma on
the existence of certain transitive orbit, from which we obtain the topological dynamics
around the Aubry set in Section 5. In Section 6, we provide more detailed information on
the set of forward weak KAM solutions in the strictly increasing cases. Some auxiliary
results are proved in Appendix A. Finally, we provide a proof of Proposition 2.11 in
Appendix B.



S, = {X1, Xo}

FI1GURE 2. The dynamics around the Aubry set

3. PRELIMINARIES

Recently, a variational approach for contact Hamiltonian systems was developed in a
series of papers [18-24]. Different from classical cases, all of technical tools for contact
Hamiltonian systems were formed in an implicit manner. The main reason to use the
implicit form is to get rid of the constraints caused by the u-argument. Besides, it is
worth mentioning that an alternative variational formulation was provided in [2,11] in
light of G. Herglotz’s work [9].

In the following, we collect some facts used in this paper. All of these results hold
under (H1), (H2) and ]%—Zq <A\

3.1. Action functions and minimizing curves. Let us collect some properties of
the action functions hyg ., (x,t) and A" (x,t) in the following propositions. See [19,
Theorems C, D] and [20, Theorem 3.1, Propositions 3.1-3.4] for more details.

Proposition 3.1.
(1) (Monotonicity). Given xg € M, ug, ui, uz € R, if uy < ug, then hyy, (z,t) <
R s (2, 1), for all (xz,t) € M x (0,+00);
(2) (Minimality). Given xo, v € M, up € R and t > 0, let Sgét,uo be the set of the
solutions (x(s),p(s),u(s)) of (CH) on [0,t] with x(0) = g, z(t) = x, u(0) = ug.
Then

hao o (z,t) = inf{u(t) | (z(s),p(s),u(s)) € Sg(’)fu()}, V(x,t) € M x (0,400).

(3) (Lipschitz continuity). The function (xq,uo, z,t) — hgyu(z,t) is locally Lips-
chitz continuous on M x R x M x (0,400).
(4) (Markov property). Given xg € M, ug € R,

hﬂ?o,uo (:L‘, L+ S) = yiél]\f/l hyvhzo,uo (y,t) (:U’ s)

for all s, t > 0 and all £ € M. Moreover, the infimum is attained at y if and
only if there exists a minimizer vy of hyy o (z,t 4+ s) with y(t) = y.

(5) (Reversibility). Given xo, © € M and t > 0, for each u € R, there exists a
unique ug € R such that

hag o (2, ) = u.

Proposition 3.2.
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(1) (Monotonicity). Given xo € M and ui, uz € R, if uy < ug, then h*0" (z,t) <
h*ov2 (g t), for all (x,t) € M x (0,+00);

(2) (Mazimality). Given xo, © € M, up € R and t > 0, let S;5"° be the set of the
solutions (x(s),p(s),u(s)) of (CH) on [0,t] with x(0) = x, x(t) = xo, u(t) = up.
Then

h*o 0 (z,t) = sup{u(0) | (z(s),p(s), u(s)) € Sy}, V(z,t) € M x (0,+00).

(3) (Lipschitz continuity). The function (xg,ug,z,t) — h*0U(x,t) is locally Lips-
chitz continuous on M x R x M x (0, +00).
(4) (Markov property). Given xg € M, ug € R,
h*O%0(z,t 4+ s) = sup py oo (y’t)(m, s)
yeM
for all s, t >0 and all x € M. Moreover, the supremum is attained at y if and
only if there exists a minimizer v of h*0"0 (x,t 4+ s), such that v(t) = y.
(5) (Reversibility). Given xg, x € M, and t > 0, for each u € R, there exists a
unique ug € R such that

OO (g, t) =
By definition, we have

Proposition 3.3. Let (z(-),u(-)) : R = M x R be a globally minimizing curve. Then
fO?" all t1, tg € R with t1 < ta,

u(tz) = 0f ha(iy) i) (2(t2), 8) if and only if u(ty) = sup ) (g (1), 5).
s s>0

Remark 3.4. By Proposition 3.3,
e a curve (x(-),u(:)) : R = M x R is globally minimizing if and only if for each
1 <te € R,
u(ty) = B7002) (3(ty) 1) — 1) (3.1)
e a curve (z(-),u(-)) : R — M x R is semi-static if and only if it is globally
minimizing and for each t1 <ty € R,
u(ty) = sup hE2)02) (1(41) s); (3.2)
s>0

e a positively (resp. negatively) semi-static curve can be also characterized in a
similar manner.

3.2. Lax-Oleinik semigroups, weak KAM solutions and the Mané set. Let
us recall two semigroups of operators introduced in [20]. Define a family of nonlinear
operators {1} }:+>o from C'(M,R) to itself as follows. For each ¢ € C(M,R), denote by
(x,t) — Ty @(x) the unique continuous function on M X [0, 4+o00) such that

17 plo) =int {00 + [ L6750, nmm»m} ,

where the infimum is taken among absolutely continuous curves 7 : [0, t] - M wi
~(t) = x. Let v be a curve achieving the infimum, and z(s) := y(s), u(s) := T5 ¢(x(s
p(s) := %(m(s),x(s),u(s)) Then (z(s),p(s),u(s)) satisfies (CH) with x(¢ ) x.
It is not difficult to see that {1} };>0 is a semigroup of operators and T, ¢(z) is a
viscosity solution of w; + H (z, w,w,) = 0 with w(z,0) = ¢(z).
11
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Similarly, one can define another semigroup of operators {7} };>o by

t
1 plo) =sup {0 - [ LO@AELTE plr)ir).
where the infimum is taken among absolutely continuous curves 7 : [0,t] — M with
7(0) = 2. Let v be a curve achieving the infimum, and z(s) := y(s), u(s) := T, ;o(x(s)),
p(s) := %(m(s),x(s),u(s)) Then (x(s),p(s), u(s)) satisfies (CH) with z(0) = .

The following proposition gives a relation between Lax-Oleinik semigroups and action
functions. See [20, Propositions 4.1, 4.2] for details.

Proposition 3.5. For each ¢ € C(M,R), we have

Ty p(x) = inf by (2,0), T p(x) = sup WPW (3 1), Y(x,t) € M x (0,+00).
Yy

The following proposition gives a relation between Lax-Oleinik semigroups and weak
KAM solutions. See [18, Lemmas 4.1, 4.2, 6.2] for details.

Proposition 3.6. The backward weak KAM solutions of (HJ) are the same as the
viscosity solutions of (HJ). Moreover,

(i) A function u: M — R is a backward weak KAM solution of (HJ) if and only if
T w=wu for allt > 0;

(ii) A function v : M — R is a forward weak KAM solution of (HJ) if and only if
T,"v = for all t > 0.

By [21, Theorem 1.2] and [22, Theorem 1], we have

Proposition 3.7. S_ # 0 if and only if Sy # (0. More precisely, the following state-
ments hold.
(1) Let v— € S_. Then the function x +— limy_yoo Ty v_(2) is well defined, and it
belongs to Sy .
(2) Let vy € S¢. Then the function x — limy_oo Ty vy (x) is well defined, and it
belongs to S_.

In the following context of this section, we proceed under the assumption S_ # (). It
is well known that each u_ € S_ is semiconcave and u4 € S1 is semiconvex. For each
u+ € S+, we define two subsets of T*M x R associated with u4 respectively by

Guy = cl ({(z,p,u) | Dus(z) exists, u = us(z), p= Dus(2)}), (3.3)
where cl(A) denotes the closure of A C T*M x R. Define
Nyi ::Nvai7 NU:E ::W*Nyi.

The following proposition shows a relation between weak KAM solutions and semi-
static curves. See [23, Proposition 17] for details.

Proposition 3.8. Let (z(-),u(-)) : R = M x R be a semi-static curve. Then there
exists v— € S_ (resp. vy € Sy) such that u(t) = v_(x(t)) (resp. u(t) = vy(x(t)) for
each t € R.

The following proposition shows a relation between weak KAM solutions and the
Mané set. See [23, Theorem 1.3] for details.
12



Proposition 3.9. Letv_ € S_, vy € S.. Let
T, ={xeM|v_(x)= lim T, v_(x)}
t—00

Ty, ={x e M |vi(x) = tli}m T, vi(z)}.
o0
Then both T, and I, are not empty. Moreover,
Nvi ={(z,p,u) e T"M xR |z €T, , u=wvs(x), p= Dvi(z)},

N = UU_ES_Nfuf = UU+€S+NU+‘

4. A TECHNICAL LEMMA

In this section, we are devoted to proving a technical lemma on the existence of
certain transitive orbit. It will be used in the proofs of Theorem 1 and Theorem 3.

Lemma 4.1 (Transitive criterion). Given Xy := (z1,p1,u1) € A, Xy = (z2,p2,u2) €
S,. If

lm Ay, o, (22,t) = ug, limsup K" (z1,t) = uy, ()
t—+o0 t—-+00

then X1 ~ Xs.
Let V be the set of (x,p,u) € T*M x R, for which there exists a strongly static orbit
(@(-),p(),u() : R = T°M xR
passing through (x,p,u). Let V = 7*V. By the definition of the strongly static set,

Ss=cl(V), Ss=cl(V).
To prove Lemma 4.1, we only need to verify
Lemma 4.2. Given any X1 := (z1,p1,u1) € A, Xy = (z2,p2,u2) € V. If

lm hg, o, (22,t) = ug, limsup h*>"2(z1,t) = wy,
t—+o00 t—+o00

then X1 ~ XQ.
We give a proof that Lemma 4.2 implies Lemma 4.1.

Proof. Let B(X, R) stand for the open metric ball on T*M x R centered at X with
radius R, and let B(X, R) stand for its closure.

Given any X := (z2,p2,u2) € 5’5. For any neighborhood U of X5, one can find
R > 0 such that B(Xs, R) C U. Note that S, = cl(V). Thus, there exists a sequence
{Zn}nen C V such that

Zn — X9, mn — 0.
Hence, there exists N := N(R) > 0 such that

d(XZaZN) S %7

which implies

B (ZN, f) - B(XQ,R)

By Definition 1.1, the existence of the transitive orbit from X; to Zy implies X7 ~
Xs. O
13



The following lemma gives a way to obtain one-sided semi-static curves from one-sided
minimizing curves.

Lemma 4.3.
(1) Given (zg,up) € M xR, let (z(-),u(-)) : Ry = M xR be a positively minimizing
curve with (x(0),u(0)) = (zo,uo). If for each t >0,

u(t) = iI>1% R o (2(E), 7). (4.1)
Then for any t1, to € Ry with t1 < to, there holds
ult2) = mf hary) u(e) (@(t2), 7). (4.2)

(2) Given (zo,ug) € M xR, let (z(-),u(-)) : R. — M xR be a negatively minimizing
curve with (2(0),u(0)) = (zo,ug). If for each t > 0,

u(—t) = sup h**"0(x(—t), 7). (4.3)
7>0
Then for any t1, to € Ry with t1 > to, there holds
u(—t1) = sup h¥(Tt2)u(=t2) (g (—41), 7). (4.4)
7>0

Proof. We only prove Item (1). Item (2) follows from a similar argument. Since
(z(+),u(+)) : Ry — M x R is positively minimizing, then

u(te) > 71_1;% Pty uee)(T(t2),7), V0 <t <ta. (4.5)
By assumption, for each ¢ > 0,
u(t) = ir;f(’) R o (2(t), 7). (4.6)
It follows that
u(ty) = ;I;% haguo(x(t1),7),  u(tz) = ir;% hag o (2(t2), T),
which gives rise to
ultz2) = mf haou(2(t2), 7) < 10f Aoy o (2(t2), 81 +7)
< 0E Pn(1) gy g (at2),00) (2 (E2), T)
= 1nf hy ) u(n) (2(t2), 7).
Combining with (4.5), we get (4.2). O

The following proposition shows that for certain minimizing orbits (z(-), p(-), u(+)) :
R — T*M x R, p(t) is uniquely determined by (x(t),u(t)) for all ¢ € R. Its proof is
postponed in Appendix A.1.

Proposition 4.4. If (z,po,u) € V, (z,pr,u) € Nt (resp. (z,p_,u) € N~), then
po = p+ (resp. po =p-).
Under (H1)-(H3), by the definitions of g 4, (x,t) and h*%0(z,t), we have
Proposition 4.5. Given (xg,x,t) € M x M x (0,+00), u,v € R.
(1) for allu, v € R and all (z,t) € M X (0,400), |hgyu(T,t) = hayo(z,t)] < |u—0v];
(2) if u > v, then h*%(z,t) — h™V(z,t) > u — v.
14



Proof of Lemma 4.2. Let {t,}nen be a sequence satisfying

lim  A*2"2(zq,t,) = uj.
tn——+00

Let vy, : [0,t,] — M be a curve v,(0) = z1 and 7,(t,) = x2 such that

P22 (1, 1) = ug — /0 "L (1), An(7), AP (4 (1), b = 7)), (A7)
Let uy(t) := h™"2(y,(t), t, — t). Then u,(t,) = uz and u,(0) = h*2"2(xq,t,). Let
palt) 1= 5 (n(0) n(0), (0.

We claim that there exists C' > 0 such that
[Pn(0)]lz1 < C, lpn(tn)llzy < C.
In fact, since u,(0) — u1 as n — 400, combining with the compactness of M, then
un(l) = hr2te (7n(1>7tn - 1) = hxl,un(O)(7n<1)7 1)

is bounded independent of n. Similarly, u, (¢, — 1) = h*2%2(y,(t, — 1),1) are bounded
independent of n. Note that u,(t,) = u2. Then one can find C' > 0 such that both
pn(0) and py(t,) is bounded by C' (see [20, Appendix]| for details).

We assume, up to a subsequence,

(7(0),pn(0), un(0)) = (x1,P1, 1), (Yltn); Pu(tn); un(tn)) — (z2,p5, u2).
In order to prove Lemma 4.2, it suffices to verify
p/1 =Pp1 p’z = P2.
_ First of all, we prove pj = p1. By Proposition 4.4, we only need to show (z1,p},u1) €
NT. Let
(Z(t), p(t), u(t)) == @41, Py, u1), Vt>0.
By the definition of N't, we need to show that

(1) the curve (Z(-),u(-)) : Ry — M x R is positively minimizing;
(2) for any t1, to € Ry with t; < tg, there holds

ult2) = mf hagy) am) (2(t2), 7). (4.8)
Since 7, : [0,t,] — M satisfies (4.7), by the definition of w,(t), we have
un(tr) = WD) (o (1) 8y — 1), VO <t <ty < e
By the continuous dependence of solutions to ODEs on the initial data,
(Y (t1), un(t1)) = (Z(t1),u(t1)),  (yn(t2), un(tz)) — (T(t2), u(t2)),
which combining with the Lipschitz continuity of (zg, ug,z) — h" (-, ta — t1) yields
u(t) = h™E28E2) ((4)) by — t1), VO <t <ty < +oo.

By Remark 3.4, (Z(-),a(-)) : Ry — M x R is positively minimizing. In order to verify
Item (2), by Lemma 4.3(1), we need to prove that for each ¢ > 0,

ﬂ(t) = H;% h$1,u1 (j(t)v T)' (49)
By definition, we have
0(t) > 0 gy (2(0), 7).
15



It suffices to show
a(t) < inf hyy o, (Z(t), 7).
>0 ’
By contradiction, we assume there exist tg, 79 > 0 such that

u(to) > hayu (Z(to), 10)-
By Proposition 4.5(2), one can find ¢ > 0 such that
RE0):8(0) (1) 70) = uy + 0. (4.10)
For each € > 0, there exists n large enough such that

d((’)/n(t(]),pn(t(]), un(t()))7 (j(t())a]a(t())7 ﬂ(to))) <g,
which combining with Lipschitz continuity of (zg,ug) — h" (21, 79) implies
om0 8) (21, 70) > 3.
Note that v, (tn) = z2, 7,(0) = x1, up(t,) = ug. It follows that

h*2Y2 (zq,t, — to + 710) = h%(t")’u"(t")(’m(o)’ tn —to +70)
> pnlto) ATt ) Gy (to).tn—t0) (o, (0, 7)

= 7 000 (3, (0), )

> + 0

U —.

Z Uty

By assumption, limsup,;_,, ., h*?“2 (x1,t) = uy. Letting n — +oo, we have u; > wuy,

which is a contradiction. 3
Next, we prove p), = pa. By Proposition 4.4, we only need to show (x2, ph, uz) € N™.

Let

(2(=t),p(=t), u(—=1)) := ®_¢(wa, ph,u), VO <t < +o0.
We aim to show that
(1) the curve (Z(-),u(-)) : R — M x R is negatively minimizing;
(2) for any t1, to € Ry with t; > tg, there holds

a(—t1) = sup K128 (=02) (F(—¢1), 7). (4.11)
7>0

The proof of Item (1) is similar to the one of pj = p; above.

Let np(—t) := yp(—t + t,) for each t > 0. It follows that 7, : [—t,,0] — M satisfies
(4.7) with 7,(0) = z2, py(—tn) = z1. Let v,(—t) := h*>%2(n,(—t),t) for each ¢t > 0.
Then v,(0) = ug and

Op(—t1) = BRI (=) (p () by — b)), VO <ty <ty < Ly (4.12)
By (4.12),
Un(=10) = Ny (—t0)0n (—t) (M (—t0), tn — t0)- (4.13)
Similar to the proof of (4.10), we have
1
Py (—t0) om (—to) (T2, T0) < U2 — 3 (4.14)
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By Proposition 4.5(1),

g (—t0) By iy (1 (—t0) b —20) (22, T0) = P (—t) g (i (1 (—t0) s —t0) (25 T0) |
<y iy (Mn(—t0) s tn — t0) = Py o (=) (M (—t0) s tn — t0)| (4.15)
<|ur — vn(~tn))|-

Then we have
Py ur (T2t — 0 +70) < Py (“t0) by g (i (—t0) st —t0) (T25 T0)
< hnn(—to),hwl’Un(,tn)(nn(—to),tn—to)(x277'0) +ur — vp(—tn)|

= Dy (—t0)vn(—to) (T25 T0) + U1 — v (—10)|
1)
< ug — 5 + ‘Ul - 'Un(_tn)’a

where the first inequality is from the Markov property of hg, u, (z,t), the second in-
equality is owing to (4.15), the first equality is from (4.13), and the last inequality is
from (4.14).

Note that n,(—t,) = 1, 7,(0) = x2, v,(0) = uz. By assumption, h*2""2(zq,t,) — ug
as t, — +oo, then v,(—t,) — w;. It is also assumed that lim;_, o hey u, (22,1) = ua.
Letting n — 400, we have us < ug, which is a contradiction.

This completes the proof of Lemma 4.2. Il

5. TOPOLOGICAL DYNAMICS AROUND THE AUBRY SET

5.1. Mather set and recurrence. For each v € S_, N, is a flow invariant subset of
T*M x R. By Proposition 3.9, the set A, is non-empty and compact. Then M # ()
directly follows from the definition of the Mather set and the assumption (A). Next, we
prove

M C N Nc(R).
Note that Mather measures are invariant Borel probabilities. Let p be a Mather mea-

sure. By the Poincaré recurrence theorem, one can find a set A C A of total p-measure
such that if (xg, po, ug) € A, then there exist {t,, }men and {, }nen such that

d((w()ap(bu())a q)tm <m07p07u0)) —0 as tm — +OO,

d((x07p07u0)7 @tn («TOJ)O?UO)) —0 as tn — —0OQ.

Since N is closed and A is dense in supp(u), then we have
M C N Nc(R).

5.2. Recurrence and strong staticity. In this part, we aim to show
NNc(R)CS,.

Let (z(-),u(-)) : R = M x R be a semi-static curve. By definition, for each t; < ta,

u(t2) = 00f () ) (2(22), ). (5.1)
By Proposition 3.3, we have
u(ty) = sup h*E2)ul2) (z(1)), s). (5.2)
s>0

It remains to prove that for each t; > t2, (5.2) still holds.
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By Proposition 3.8, there exists v_ € S_ such that u(t) = v_(x(¢t)) for all ¢t € R. If
x(t1) = x(t2), then
u(t) = v(x(t1)) = v-(z(t2)) = ulta),
for which (5.2) holds for each t; > ts.

In the following, we prove the case with x(t1) # x(t2). Note that ¢; > ts. Since
(z(-),u(-)) : R - M x R is semi-static, we have

u(ty) = sup KB (1(4y), 5). (5.3)
s>0

Let p(t) := %(m(t),;ﬁc(t},u(t}). We assume
(@(t1),p(tr), u(tr)) € N NR,
Let {7, }nen be a sequence such that

d((z(tr),p(t1), u(t1)), v, (2(t1), p(t1), u(t1))) = 0 as 7 — —oc.
Denote A :=ty — t1. By (5.3), if 7, < A, we have

u(tl + Tn) = sup hx(b)’u(w)(x(tl + Tn), S)‘
s>0

Note that x(t1) # x(t2). It follows from the Lipschitz continuity of Mané potentials (see
Proposition A.2 below) that

u(ty) = sup A2 (141, 5),
s>0

which together with (5.3) implies (z(-),u(-)) : R = M x R is a strongly static curve.
Then N Ncl(R) C Ss follows from the closedness of S;.

5.3. Strong staticity and non-wandering property. In this part, we are devoted
to proving

S CAnQ.
Let (z(-),u(-)) : R — M xR be a strongly static curve. Let p(0) := %(x(O),J‘U(O),u(O)).
Let Qo := (2(0), p(0), u(0)). By definition, it suffices to prove that for each neighborhood

Uy, of Qo, there exist @, € U, and T,, > 0 such that &7, (Q,) € U,.
By [18, Theorem 1.4], under (H1)-(H3) and (A), the following function

hag o (2, +00) 1= t—1>12100 haouo(x,t), €M (5.4)

is well defined. Moreover, for each s,t € R, both lim;— e hy(s)u(s)(z(t), 7). Unfor-
tunately, lim;_, oo h*0"0(z,t) is not always well defined. But it can be proved that
limsup,_, , o A% (2(t), 7) is well defined (see Lemma A.4 below).
Lemma 5.1. Let (z(-),u(:)) : R — M x R be a semi-static curve, then

(1) it is static if and only if

u(t) = lim hz(s),u(s) (l‘(t),T), Vs, t € Ry

T—+00
(2) it is strongly static if and only if
u(t) = limsup h*) ) (x(t),7), Vs, t € R.

T—+00
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Proof. We only prove Item (1). Item (2) follows a similar argument. By definition, we
have

u(t) = 71_1;{; h:p(s),u(s) (SC(t), T) <

On the other hand, for each n € N, we get

m o (@), 7), Vs, tER.

li
T—+00

u(t) = ;I;fo hw(s+n),u(s+n) (l‘(t), G)'

There is a sequence {o,} C Ry such that

1
hx(s+n),u(s+n) (.’B(t), Un) < U(t) + %7

which together with the Markov property implies

h:v(s),u(s) (:L‘(t), n+ Un) < hx(s-l—n),hm(s)’u(s)(:v(s—i—n),n) (x(t), Un)
= hx(s+n),u(s+n) (:U(t), UTZ)

1
t —.
<u()+n

Let n — 4+00. Then
U(t) > lim h:v(s),u(s)(x(t)aT)'

T—r+00
Then we have
u(t) = lim hm(s),u(s) (z(t),7), Vs, teR.

T—+00
Conversely, if
u(t) = lim hm(s),u(s) (Jf(t),T), Vs, t € R,

T—+00

then
> .
u(t) > ;I;% Ps(s) u(s) (2 (t), T)

Note that (z(-),u(-)) : R = M x R is semi-static. By Proposition 3.8, there exists
v— € S_ such that u(t) = v_(z(t)) for each t € R. Combining Proposition 3.5 and
Proposition 3.6, we have

u(t) = v-(x(t) = Trv-(2(t) = inf hy, (@ (t),7)

< h:):(s),v_ (z(s))(x<t)7 T) = hx(s),u(s) (.’B(t), T)a VT >0,
which implies
< i .
u(t) = 71_I>l% hx(s),u(s) (.’L'(t), T)
This completes the proof of Lemma 5.1. O
Let xo := 2(0), up := u(0). By Lemma 5.1,

Hm  hgg (2o, t) = up, limsup A0 (xq,t) = up.
t—+o00 t—+o00

Then 5'5 C AN Q follows from Lemma 4.1.

Remark 5.2. The Aubry set in the classical case is defined in T* M instead of T* M x R.
One can embed this set into T*M x R by adding the u-argument in the following way.
An important result in weak KAM theory ( [8, Theorem 5.2.8]) shows that there exists
a conjugate pair (u—,u) such that the Aubry set is represented as

T ) = {(@.p) € T"M | u_(2) = uy (x), p = Du_(a)}.
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The embedding Aubry set in T*M x R is
A= {(z,p,u) e T*M xR | (z,p) € -,z.(u,,u+)a u=u_(z).}

Note that A = Sy in the classical case. From Theorem 1, each embedding Aubry set
is non-wandering in T*M X R in classical cases. Moreover, each non-wandering set in
T*M x R is also an embedding Aubry set by choosing certain conjugate pair (see [10,
Theorem 1.5]). This gives a description for the Aubry set in the classical case without
using action minimizing property.

6. STRICTLY INCREASING CASE
In this section, we consider the cases under (H1), (H2), (H3’) and (A).
6.1. The structure of S.. It was shown by [22, Proposition 12] that

Proposition 6.1. All of elements in S; are uniformly bounded and equi-Lipschitz con-
tinuous.

Note that (Sy, <) is a partially ordered set. In view of Zorn’s lemma, if every chain
in S has a lower bound in S;, then S} contains a minimal element. To prove Item (1)
of Theorem 2, it is suffices to show

Proposition 6.2. Let Z be a totally ordered subset of Sy. Let @(x) := inf,ecz u(x) for
each x € M. Then @ € S;.

Lemma 6.3. There exists a sequence {uy}nen C Z such that u, converges to 4 uni-
formly.

Proof. Note that all of elements in S; are uniformly bounded and x-equi-Lipschitz
continuous. We only need to construct a sequence {uy, }nen C Z such that u,, converges
to @ pointwisely.

Since the Riemannian manifold M is compact, it is separable. Namely on can find a
countable dense subset denoted by U := {z1,z2,...,Zp,... }.

Claim. There exists a sequence {u,}n,eny C Z such that for a given n € N and each
ie{l,2,...,n},

0 < () — ii(zs) < % (6.1)

If the claim is true, then u,, converges to @ pointwisely. In fact, according to Proposition
6.1, every uy € St is k-Lipschitz, we have
() —a(y) < sup |uy(z) —us(y)| < wdist(z, y). (6.2)
ut+ €St
Fix z € M. There exists a subsequence V := {x, }men € U such that |zg, — x| <
1/km. Given ky, € N, we take n > ky,. Then {x1,x9,...,2,} NV # 0. Let z;, €
{z1,29,...,2,} N V. It follows from (6.2) that
un(2) = @(2)] < Jun (@) = wn(io)| + [un(wio) — @(wiy)| + [0(x) — @lzi)]
1 2 1
< 2k dist(ziy, ) + — < A
n_ i n
Let n and ig tend to +oo successively. We get the pointwise convergence of u,, to .
We prove the claim by induction in the following. For x1 € U, by the definition of
the infimum, there exists u; € Z such that ui(x1) — u(x1) < 1/n for a given n € N.
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We assume there exists ux € Z such that for i € {1,2,...,k}, ug(z;) — a(z;) < 1/n.
One needs to construct ugi1. For zy1 € U, if ug(xps1) — @(zks1) < 1/n, then we take
upt+1 = ug. Otherwise, we have uy(xg41) — @(xg+1) > 1/n. In this case, one can find
ugs+1 € Z such that ugiq (k1) — W(agsrr) < 1/n.

It remains to show w41 (z;) — u(z;) < 1/n fori € {1,2,...,k}. We know that

. 1
Upt1(Tp41) < U(xpyr) + - < up(xpy1).

Note that Z is totally ordered. It yields ug41 < ug on M. Thus, for i € {1,2,...,k},
1
g1 (i) — w(z;) < ug(x;) — ax;) < e
This completes the proof of Lemma 6.3. O

Under (H1)-(H3), by the definitions of T;F, we have (see [21, Proposition 2.4] for
details)

Proposition 6.4.
(1) For ¢1 and p2 € C(M), if p1(x) < @a(z) for all x € M, we have T, ¢i(x) <
T, pa(z) and T; 1 (x) < T pa(x) for all (x,t) € M x (0,+00).
(2) Given any ¢ and 1) € C(M), we have || T, o —T, oo < |l —|loo and ||T;F ¢ —
T, )00 < €Ml — Ylloo for all t > 0.

Proof of Proposition 6.2. If Z is a finite set, the proof is finished. We then consider Z
being a infinite set. By Proposition 3.6, we need to show # is a fixed point of Tj. By
Proposition 6.4 (2), we have

1T wn = T oo < €lup — | oo,

By Lemma 6.3, the right hand side tends to zero. Then for a given ¢ > 0,

Tjﬂ = lim T;Ml = lim wu, =1,
n—-+00 n——+o0o
which implies @ € S; by Proposition 3.6. O

Next, we prove Item (2) of Theorem 2. Let us recall Z,,,x denotes a maximal totally
ordered subset of Sy, u_ denotes the unique backward weak KAM solution, and u*
denotes the minimal element in 2.y, i.e.

u*(x) = U+i€%f vy ().
max

Lemma 6.5. Denote
Iy ={x e M| u(r) =u_(x)}
Then Ly« # 0 and for all vy € Zpax, vy = u_ on Ly«.

Proof. By Proposition 6.2, u* € S;. By Proposition 3.7 and the uniqueness of u_,

u_(z) = t_l)igloo T, u*(x).

According to Proposition 3.9, Z,» # (). Note that for all vy € Z.x,
v <vy <u_, on M.

Then vy (z) =u_(z) for all x € Z,». O
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Lemma 6.6. Define m(-,-) : M x M — R by
m(z,y) = limsup h¥"~ W) (z,¢), Va,y e M.

t——+o00
Then for eachy € M, m(-,y) € Sy.
Proof. Fix y € M. By [22, Lemma 1(i)], h¥*-®¥)(-,-) is uniformly bounded on M x

[0, +00) for any § > 0. Thus, there exists a constant K > 0 independent of ¢ such that
for t > § and each x € M,

’hy,uf(y)(%t)’ < K.
Note that for any ¢ > 24, we have

’hy,uf(y) (2, 1) — W9 (2 )

sup hz,hy’“*(y)(z,t—(S) (1‘,5) — sup hz,hy’”*(y)(z,t—é) (1‘/,5)‘
zeM zeM

< sup hz,hy’“—<y)(z,t—(5) (x’ 5) _ hz,hy’“—(y>(z,t—§) (:L',, 5)‘ .

zeM

Since h'(+,d) is uniformly Lipschitz on M x [-K, K| x M with some Lipschitz constant
denoted by ¢, then

‘hy’“—(y) (z,t) — WU-W (2 1) <o dist(z,2), Vit > 20.

It follows that the family {h¥"~®) (z, t)};~9s is equi-Lipschitz continuous with respect to
x. Thus, m(z,y) is well defined. Note that for a given ¢ > 0, the Lax-Oleinik semigroup
T," satisfies

1T ¢ = T Ylloo < €l = Plloc,
for any ¢,9 € C(M,R). Note that T, commutes with limsup. It follows that for a
given t > 0,

T,"m(z,y) = limsup Tt+hy’“*(y) (z,s) = limsup W%~ W (z, s + t) = m(z,y),

s——+400 S$—+00
which implies m(-,y) € S;. O

Let us recall V = 7*V, where V denotes the set of (x,p,u) € T*M x R, for which
there exists a strongly static orbit

(@(),p(-),u(-)) : R = T°M xR
passing through (z, p, u).
Lemma 6.7. Giveny € V, we have

inf  vp(z) =m(z,y), VYoreM. (6.3)

v (y)=u—(y)
v ESL
Proof. By the definition of V, there exists a strongly static curve
(z(),u(:)):R— M xR

such that x(0) = y. Since V C A, then u(t) = u_(z(t)) for all t € R. In particular,
u(0) = u—(y). It follows from Proposition 5.1 that

u_(y) = u(0) = limsup h* O ((0), s) = limsup K"~ W (y, s) = m(y,y),

s$—+400 s—+400
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which together with m(-,y) € Sy implies
m(z,y) > inf  wvi(x).

v (y)=u—(y)
v ESL

On the other hand, we have

vi(z) = T vy () > sup WU W) (2, 1)

= sup h¥"“=W)(z,¢) > lim sup k"~ ) (z, 1) = m(z, y).

t>0 t——+o0
It means
inf vy (x) >m(x,y).
vt (y)=u—(y)
v ESy
This completes the proof of Lemma 6.7. (I

Remark 6.8. In general contact cases,
(1) m(x,y) is Lipschitz continuous in x, but it may not be continuous in y;
(2) the equality (6.3) may not hold for y € M\V.

We still consider the Hamilton-Jacobi equation in Proposition 2.11:

1
Au + §]Du\2 +Du-V(z)=0, zeT, (6.4)
where 0 < X\ < |V'(z2)|. By definition, for yy € T,

T 1
m(yo,yo) = — lim inf inf / M= |3(s) — V(v(s))|2ds.
(o) = —limint ik [0 = Vi (s)

By Lemma 6.6, m(-,yo) € Sy. We choose a point yy # x1,x2. It is not difficult to

verify m(yo,yo) < 0. It follows that m(z,yo) = w4 (x) for allx € T. On the other hand,
by Lemma 5.1(2), m(xa,x2) = 0. Thus, m(z,x2) = uy(x) =0 for allx € T. Then

Jm m(yo,y) = w(yo) < 0= m(yo, x2),

yF#T2
which means m(x,y) is not continuous at y = xo. More precisely, for each x € T,
m(z,y) is continuous at y # x2 and it is upper semicontinuous at y = xa. This verifies
Item (1).

For Item (2), we already know that if yo # x1,x2, then m(z,yo) = w4 (z) for all
x €T. Then
inf vy (yo) = ut(yo) = 0> wy(yo) = m(yo, Yo)-

v+ (yo)=u—(yo)
V4 €S+

Thus, the equality (6.3) does not hold.
Proof of Theorem 2(2). By the definition of the Mather set, we have
0 # ./\;lu* =M N Gy giu*
Based on Section 5.1, the recurrent points are dense in ./\;lu~ Let (x0, po, up) € M- be
a recurrent point. According to Section 5.2, (zg, po,uo) € V. Then one can choose
xo € MNV NI, (6.5)

such that

inf vy(x) = m(x,z9), Vre M.
v4(wo)=u—(20)
v ESY
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It remains to prove

inf vy(z) = inf va(x).
dnf +() L +()
U+ES+

By (6.5), u*(zo) = u—(z0). It follows that for all vy € Zpax, v4(x0) = u—(x0). Then

inf vy(z) > inf vy ().
dnf +( )_u(%):ui(wo) +()
U+ES+

On the other hand, by Lemma 6.6 and Lemma 6.7,

u(zx) = inf vy(z) € Sy
v (zo)=u—(z0)
v ESH

Due to the maximality of the set Z,.x, we have u € Z.«. It implies
Zinf vy(z) < inf )v+(x).

max V4 ({E())ZU,_ (xo
v+ ESL

This completes the proof of Theorem 2(2). O

6.2. Existence of transitive orbits. We prove Theorem 3 in this part. By Lemma
4.2, we only need to consider the case with xo € V. By Proposition 6.6 and Proposition
6.7, the function

m(-, x2) = limsup }19”2’“—(962)(,7 t)
t—+00

is the minimal forward weak KAM solution of (HJ) equaling to u_(x2) at z2. By
assumption, for each vy € Sy, vy (r2) = u—(z2) implies v4 (1) = u—(z1). Then
lim sup A%2%=@2) (2 1) = u_(z1). (6.6)
t——4o00

Note that for each (zg,ug) € M x R,

Hm Dy a2, t) = u_(x).

t—4o00
It yields
tilgloo hxlyul ($2, t) = Uu— (x2)
Note that u_(z1) = u1, u—(x2) = ug. Theorem 3 follows from Lemma 4.1. O
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APPENDIX A. AUXILIARY RESULTS

For the sake of generality, we will prove all of the results in this appendix under (H1),
(H2) and |%—Ij\ < X instead of (H3).
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A.1. Strong staticity and one-sided semi-staticity. In this part, we prove Propo-
sition 4.4. First of all, we provide a way to construct “long” minimizers from “short”
ones, which is a direct consequence of the Markov and monotonicity properties of the
action functions.

Proposition A.1. Given any z, y and z € M, u1, us and ug € R, t, s > 0, let
hﬂ?ﬂn (y7 t) = ug, hy7u2 (27 3) = hfc,m (Za t+ S) =us3
(resp. h*ts (y7 8) = Uz, h¥2 (CB, t) = h>" (.fL', + 8) = Ul)-
Let vy : [0,t] = M be a minimizer of hy., (y,t) (resp. h¥"2(z,t)) and v2 : [0,s] — M
be a minimizer of hy.,(z,s) (resp. h»"3(y,s)). Then
| m(o), o €[0,t],
v() = { Yoo —1), o €[t t+ s,

is a minimizer of hy, (2,t +s) (resp. h»"3(x,t + s)).
Proof of Proposition 4.4. We only need to prove if (z,pg,u) € V, (x,pa, u) € N7, then
po = p+. The other case is similar. For each t € R, let

(Z'l(t),pl(t), Ul(t)) = q)t(xap07 U)
For each t > 0, let

(z2(t), p2(t), u2(t)) = P, py,u).

We need to prove if a globally minimizing curve (z1(-),u1(-)) : R — M x R satisfies for
each t1,t2 € R,

u1 (t2) = ;gg h$1(t1),u1(t1)(x1 (t2)7 5)7 (Al)
then pg = p4+. )
Since (z,py,u) € N7, then (x2(-),u2(-)) : Ry — M x R is positively semi-static.
Fixing § > 0, by the Markov property, we have

oy (=8),1(=5) (2(0), 20) = A0 By 0y sy (00) (2200, 0)-

Note that
hxl(—é),ul(—é) ($7 5) = u, hx,u($2(5)’ 5) = UZ((S)
It follows that
Py (=8)ur (=6) (22(0),26) < by o (2(6), 6).
We assert that the inequality above is indeed an equality. If the assertion is true, then
by Proposition A.1, the curve defined by

x1(c —96), o€]l0,d],
(o) = { xiga - (5%, o 6[[5, 2]6],

is a minimizer of Ay, (_s) ., (—s)(72(d),20) and it is of class C'. Thus,

oL .
bo = a(l‘,’y(O),O) = P+

It remains to verify the assertion. By contradiction, we assume that there exists
A > 0 such that
hxl(—é),ul(—é) (33‘2(5), 25) = hx’u(l‘z(a), 5) - A
By (A.1), for each € > 0, one can find so > 0 such that

e a(@1(—6), 50) — ur(=6)| < e.
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From the Lipschitz continuity of hyg ., (x,t) w.r.t. uo,
Py (=8) b (21 (=8),50) (T2(6)5 20) — Dy (—§) (=) (72(5), 20)| < ke,

where k denotes the Lipschitz constant of hg, u,(x,t) w.r.t. ug. It follows from the
definition of Nt that

uz(9) = ig% h:r,u(ffZ(é)aT)a
< hz,u(:@(é), S0 + 26),

< Ny (=8) g (1 (—6),50) (22(5), 20),
< gy =6y (—5) (72(0), 20) + ke,
= hgu(22(0),0) — A+ ke.
Note that A, k are constants independent of €. Taking & small enough, we have
u2(0) < hyy(z2(6),6) — % = ug(d) — %,
which is a contradiction. This completes the proof of Proposition 4.4.

A.2. Lipschitz continuity of Mané potentials. Let (z(-),u(-)) : R - M x R be
a semi-static curve. Fixing 7 € R, we consider two kinds of the Mané potentials as
follows:

-~ ~

K. (z) := inf hy(r) u(r)(2,8),  K-(2):=sup AT (g 5).

s>0 s>0
In this part, we will prove

Proposition A.2. Given 1 € R, let U be an open set containing x(1). Then both K, ()
and K, (x) are uniformly Lipschitz continuous with respect to x € M\U.

We only need to prove this proposition for K, (x), from which the Lipschitz continuity
of K-(z) can be obtained by a similar way.

Lemma A.3. Let K be a compact subset of M and uy € R. Then for any xo € M\K,
we have lim;_ g+ hyy uo(x,t) = 400 uniformly in x € K.

Proof. Given (z,t) € K x (0,+00), let T, . be the set of the minimizers of hy v, (@, t).

T0,T
Namely, for each v : [0,¢] = M contained in I'; ., we have 7(0) = zo, 7(t) = = and
t
Poso(@8) = w0+ [ LO)AT) by o (1), 7)) (A2)

Let

gw(t) = inf sup h$07uo(7(8)7 5)'
YETL ) 2 0<s<t

We proceed the remaining proof by two steps.
Step 1: we show lim;_,g+ g4 (t) = 400, uniformly in z € K.

By contradiction, we assume there exist x,, € K and vy, € I''»  witht, — 0asn — +oo

T0,Tn
such that
Raouo (Yn(8),8) < C1, Vs € [0, ], (A.3)

where C is a constant independent of n. Let A := inf, s)erm L(x,d,up). Given T > 0,
let
A— )X
CQ = ]ug\e’\TO + ﬂ (e/\TO — 1) + 1,

A
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where A is a Lipschitz constant of H(z,p,u) w.r.t. u.
Claim. For any (z,t) € M x (0,T0], hague(x,t) > —Cs.

Proof of the claim. We assume by contradiction that there exists (z1,t1) € M x (0, Tp]
such that Az, (21,t1) < —Cy. Let v € Tl Denote u(s) 1= hgqu(V(s),s) for s €

0,21 "
[0,¢1]. Note that ug > —C5. Since u(s) is continuous on (0,¢1], and lim,_,¢+ u(s) = wuo,
there exists a closed interval [s1, s2] C [0,%1] such that

U(Sl) = up, u(Sg) =—-Cy —-05< U(S) <wug, Vse [81,82].
Since 7y satisfies (A.2), based on the variational principle (see Proposition 2.2),
u(s) = L(v(s),7(s),u(s)) = A+ Mu(s) —uo), Vs € [s1,52].

A direct calculation yields for any s € [s1, s2],

u(s) > ugete—s) 4 A=A (eMs—sn _ 1)

A
> —fugle® — A=Al (on )
A
> —(Cs.
This contradicts u(s2) = —Ca. Then the claim is true.

For n large enough, we have ¢, < Tp. Let C' := max{C;,C>}. Based on (A.3) and
the assertion above,

|haguo (n(8), 8)| < €, Vs € [0, 4,]. (A.4)

Let § := dist(zo, K), where dist(-,-) denotes a distance induced by the Riemannian

metric on M. Let
B = C+ 15-1- ‘UO’

Since L(x,#,0) is superlinear in &, then there is D := D(B) € R such that L(z,%,0) >
B||z||z — D for all (z,&) € TM. Since t, — 07 as n — +o0, for n large enough, we get
|(D + AC)t,| < 1. Note that

tn
P o (s ) = 110+ /0 L (5): An(5): Py (Y (5), ) s

2t [ 20600050, 05 A [ Vg, s
zuo—i—Boé—Dtn—)\Ctn '
=wug+ Bé — (D + \O)t,
> C,
which contradicts (A.4). Therefore, lim;_,o+ g,(t) = +00, uniformly in x € K.
Step 2: we show lim; g+ hgg (2, t) = +00, uniformly for all z € K.
From Step 1, for any N > 0, there is ¢ty > 0 such that g,(t) > N for t < ¢ty and all
z € K. Let y € I . Note that hygu,(7(s),s) = ug as s — 0. One can find sg € [0, ]

such that hg ., (v(s0),50) = N.
Note that

g o (711) = Py ((50), 50) + / L(1(),4(5): hag o (1(5). 5))ds.

S0
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Similar to the argument above, for ¢ < ¢y, we have

haguo(x,t) > N +/ L(v(s),7%(s),0)ds — )\/ |ho,u0 (Y(8), 8)|ds

S0

> N+ B§ — (D + A\O)(t — so).

Let t — 0. Then ¢t — sp — 0T. Moreover, hy,.,(z,t) > N for each z € K, which
completes the proof. O

By [23, Lemma C.1], we have

Lemma A.4. Let (z(-),u(-)) : R = M xR be a semi-static curve. Then for each § > 0,
o Uniform Boundedness: there exists a constant K > 0 independent of t such that
fort> 9 and each x € M, s € R,
|hx(s),u(s) (.CU, t)| < K, |h$(8)7U(S) (‘Tv t)‘ < K;
e Fqui-Lipschitz Continuity: there exists a constant k > 0 independent of t such
that for t > 26 and s € R, both x> hy(g) u(s)(7,t) and  — he():u(s) (2, ) are
k-Lipschitz continuous on M.

Proof of Proposition A.2. We only need to prove this proposition for K, (z). Let U
be an open neighborhood of z(7) and x € K := M\U. By Lemma A.3, we have
limy_,0+ Py(r),u(r) (7, 1) = 400 uniformly for x € K. Thus, there exists § > 0 independent
of z € K such that

< = inf =i )
K’T(x) ;20 hx(‘r),u(f) (‘Ta S) ;I;g hz(‘r),u(f) (1’, 3)7 Ve € K
It follows from Lemma A.4 that
‘KT(JC) - KT(Z/)}

= ;gg hl‘(T),u(T) (z,8) — ;gg hx(T),u(T) (Y, s)

< Sli%) ‘hx(f),u(r) (x7 S) - hz(‘r),u(ﬂ') <y7 $)|

<k d(z,y).
This completes the proof. [l

APPENDIX B. PROOF OF PROPOSITION 2.11
It is clear that w_ = 0 is the unique element in S_, and uy =0 € S;.

B.1. On Item (i). The contact Hamilton equation reads
t=p+V(x),
p=—pV'(z) = Ip, (B.1)
u=p(p+V(r)) = H(z,p,u).
Denote the solution of (B.1) by (z(t),p(t), u(t)).
A direct calculation shows

dH
= M ((®),p(t), u(?)).
Thus, we only need to consider the dynamics on zero energy level set
E:={(z,p,u) e T"T xR | H(z,p,u) = 0}.
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To verify Item (i), it suffices to consider the linearization of (B.1) in a neighborhood of
(x2,0) € T*T. It is formulated as

[;] B [ V/(0x2) —(V’(xlz)m) } [x;@ ] (B.2)

By the assumptions on V' (z), Item (i) holds.
B.2. On Item (ii). This item was proved by [23, Proposition 1]. We omit it.

B.3. On Item (iii). To fix the notations, we use D, to denote the set of differentiable
points of vy. For each vy € &4, we know that it is semiconvex with linear modulus
(see [3, Theorem 5.3.6]). Moreover, D,. has full Lebesgue measure on T. Denote
M := II* M, where IT* : T*T x R — T*T. Namely, M denotes the projection of the
Mather set M to T*T. Let & := II*®;.

The following lemma is from [7, Proposition 4.5].

Lemma B.1. Let us consider
\u+ H(z,dyu) = ¢(H) in T, (B.3)

where H : T*T — R is a C3-Hamiltonian, satisfying Tonelli assumptions and T is a
flat circle. Let (29,0) € M be a saddle point for the discounted flow generated by

. OH
{xz O (1, p),

) o
p=—5%(z,p) — Ap.
Given vy € S with vy (zo) = u_(x0), let T1,T2 be two differentiable points of vy with

xo € (T1,%2). Denote p; == dz,v4 with i =1,2. If
(x()a 0) € w('i‘lapl) N w(£27ﬁ2)7

where w(Z;, p;) denotes the w-limit set of (Z;,p;). Then there exists § := 6(v4) > 0 such
that dyvy exists for all x € [xg — d,z9 + 6], and the set

{(z,dyvy) | € [xg — 0,20 + I]}
coincides with the local stable submanifold of (g, 0).

Next, we prove Item (iii). Note that u_ = 0 is the classical solution. Then uy = 0
is the maximal forward weak KAM solution. By [23, Proposition 10], if the forward
weak KAM solution is unique, then S; = A. It follows from Proposition 2.11(ii) that
there exists vy € Sy different from u4. Thus, v4 < 0 and there exists g € T such that
v4 (o) < 0. Consider

Z:={zxe€T|vy(x)=0}.
Then 7 is a compact invariant set by 7*®;, where 7#* : T*T x R — T denotes the
standard projection. Denote a fundamental domain of T by [z, 21 + 1). Consequently,
there are several possibilities for Z restricting on [z1, 21 + 1):

{z1}, {2}, {z1, 22}, (21,22, [22, 20 + 1) U {21}, [z1,21 + 1). (B.4)
The remaining proof is divided into two steps.

Step 1. For each vy € Sy, vy (z2) < 0.

We assert that if vy (z2) = 0, then vy = uy = 0. In fact, by (B.4), it suffices to show

that there exists € > 0, such that v = 0 on [z2 — €,22 + €|. By contradiction, we

assume there exists 2 € D,, N [z2 — 3¢, 22), such that v4(Z) < 0. Let p := dzv,.
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Let (x(t),p(t)) := ®¢(Z,p) for all t > 0. Then one can find ty > 0 such that x(tg) €
[x2 — €, 72) and d,v exists at = x(to) with dyq,)v4+ > 0. Note that
(to) = p(to) + V(2(to)) = dare)v+ + V(2(to))-

By the definition of V(z), V(x(tp)) > 0. It follows that @(t9) > 0. Thus, (x2,0) €
w(z,p). By (B.2), if A < |V'(z2)|, (22,0) is a saddle point in M. By Lemma B.1,
vy =0 on [x2 —&,0]. Similarly, we have v =0 on [x3 — €, x2 + €].

By the assertion above, we have vy (z3) < 0 and Z = {z1}.

Step 2. The forward weak KAM solution vy different from w4 = 0 is unique.
Let € D,, N (x1,x2). By Proposition 2.11(ii),
M = {(21,0,0), (22,0,0)}, (B.5)

which together with vy (x2) < 0 implies (x1,0) € w(z,p). In fact, if (x1,0) ¢ w(z,p),

then (x2,0) € w(z,p). Moreover, vy (z(t)) — vy (z2) < 0 as t — 400, which contradicts

(B.5). By (B.2), (z1,0) € M is a saddle point. By Lemma B.1, for any v} € S;, there

exists  := 0(v4) > 0 such that dyvy exists for all € [z — d, 21 + §], and the set
{(z,dyvy) | @ € [21 — 6,21 + 0]}

coincides with the local stable submanifold of (z1,0).

By contradiction, we assume there exists another v that is different from both
and v4. From the discussion above, we have v4(z1) = v4(z1) = 0 and one can find
8’ > 0 such that d, v = dyv4 on [x1—0', 21+0']. That yields o4 = vy on [x1—0", x1+0].
By [7, Proposition 4], v4 = v4 on T. Therefore, the forward weak KAM solution v
different from u. is unique.

B.4. On Item (iv). To verify Item (iv), we only need to construct an example to show
that for A large enough, S; contains more than two elements. We choose A = 3 and
V(xz) =sinz. Then x1 =0, zo = 7. Let

o(z) :=cosz —1, Y(x):=—cosz — 1.
A direct calculation shows that
3p+ %\D<p|2 + Dy -sinz <0, 3¢+ %|Dw\2 + Dy -sinz <0,
which means both ¢ and v are viscosity subsolutions of
u(x) + %|Du\2 + Du-sin(z) =0, =zeT. (B.6)
Then
Tp <, T <. (B.7)

Note that ¢, < 0 and ¢(0) = ¥ (7) = 0 = u_(0). By [22, Proposition 13], both T;"¢
and T;7¢ converge as t — +oo. Let

ui(z) == lim T e, wua(z):= lim T, 4.

t—4o00 t—+400

Then uq,us € S4. By (B.7) and the constructions of ¢ and v, we know that u, ug and
uy = 0 are different from each other.
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