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Abstract

In this paper, we introduce a weakly coupled mean field games model of first order for k different kinds of
major players. The existence of solutions of this kind of weakly coupled mean field games model is proved.
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1 Introduction and main results

In the present paper, we consider a weakly coupled mean field games model of first order for k kinds of
major players. The way they interact is not only the mean field terms, but also the value of the cost functional.
Assume M is a connected, closed (compact without boundary) and smooth Riemannian manifold. For x ∈M
and i ∈ {1, . . . , k}, let D denote the spacial gradient with respect to x, we consider the following model

Hi(x,Dui(x)) +

k∑
j=1

Bij(x)uj(x) = Fi(x,m1, . . . ,mk), (1.1)

div
(
mi

∂Hi

∂p
(x,Dui(x))

)
= 0, (1.2)∫

M

midx = 1. (1.3)

In the classical mean field games model, there is a large community of identical players. The cost functional of
each player is determined by the same Hamiltonian H . As pointed in [1], in most real problems of economics,
there is not just one major player. So it is natural to consider a system with several major players. The model
(1.1)-(1.3) describes a system with k groups of major players. The Hamiltonians of each group of players are
different from each other. The cost functional of the ith major player is determined by the Hamiltonian Hi, the
cost functional uj of the jth major player, and the distribution mj of the jth major player. The system is weakly
coupled in the sense that the coupling terms depend only on the zero order terms, such as uj and mj , and do not
depend on the gradient terms.

For each i ∈ {1, . . . , k}, the function Hi : T ∗M → R is of class C2 and satisfies:

Mathematics Subject Classification (2010):

1



2

(H1) (Positive definiteness). For every (x, p) ∈ T ∗M , the second partial derivative ∂2Hi

∂p2 (x, p) is positive
definite as a quadratic form.

(H2) (Superlinearity). For every x ∈M , Hi(x, p) is superlinear in p.

(H3) (Reversibility). Hi(x, p) = Hi(x,−p) for every (x, p) ∈ T ∗M .

The coupling matrix (Bij(x)) is of class C2 on M and satisfies

(B) The matrix (Bij(x)) is irreducible (i.e., the system (1.1) can not be decoupled) and

Bij(x) ≤ 0 if i 6= j,

k∑
j=1

Bij(x) > 0 for all i ∈ {1, . . . , k}.

In this paper, we denote by C(M) (resp. C(M,Rk)) the space of continuous functions from M to R (resp.
Rk). We also denote by ‖ · ‖∞ the supremum norm of both real and vector valued functions on its domain.

Let P(M) and P(T ∗M) denote the set of Borel probability measures on M and T ∗M respectively. Both of
them are compact under the w∗-topology. Let X denotes either M or T ∗M . A sequence {µk}k∈N ⊂ P(X) is
w∗-convergent to µ ∈ P(X) if

lim
k→+∞

∫
X

f(x)dµk =

∫
X

f(x)dµ, ∀f ∈ Cb(X),

where Cb(X) stands for the space of bounded and uniformly continuous functions on X . We shall work with the
Monge-Wasserstein distance d1, which is defined by

d1(m1,m2) = sup
h

∫
M

hd(m1 −m2), ∀m1, m2 ∈ P(X),

where the supremum is taken over all 1-Lipschitz continuous functions on X . We recall that d1 metricizes the
w∗-topology. In the following, the product space P(X)k is endowed with the product topology. Then P(X)k is
compact by the Tychonoff theorem, and is endowed with a distance dk induced from d1. More precisely, for
m1 = (m1

1, . . . ,m
1
k) and m2 = (m2

1, . . . ,m
2
k) ∈ P(M)k, we define

dk(m1,m2) = max
1≤i≤k

d1(m1
i ,m

2
i ).

The topology induced by dk coincides with the product topology. For each i ∈ {1, . . . , k}, the function
Fi : M × P(M)k → R satisfies:

(F1) for every m = (m1, . . . ,mk) ∈ P(M)k, the function x 7→ Fi(x,m) is of class C2 and

sup
m

∑
|α|≤1

‖DαFi(·,m)‖∞ < +∞,

where the index α = (α1, . . . , αn) and Dα = Dα1 . . . Dαn .

(F2) for every x ∈M the function m 7→ Fi(x,m) is Lipschitz continuous and

sup
x∈M

m1,m2∈P(M)k

m1 6=m2

|Fi(·,m1)− Fi(·,m2)|
dk(m1,m2)

< +∞.
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Definition 1.1. Assume that Hi : T ∗M ×Rk → R is continuous for each i ∈ {1, . . . , k}. A continuous function

u : M → Rk is called a viscosity subsolution (resp. supersolution) of

Hi(x,Dui,u) = 0, x ∈M, 1 ≤ i ≤ k, (1.4)

if for each component ui of u and test function φ of class C1, when ui − φ attains its local maximum (resp.

minimum) at x, then

Hi(x,Dφ(x),u(x)) ≤ 0, (resp. Hi(x,Dφ(x),u(x)) ≥ 0).

A function is called a viscosity solution of (1.4) if it is both a viscosity subsolution and a viscosity supersolution.

Definition 1.2. A solution of the system (1.1)-(1.3) is a couple (u,m) ∈ C(M,Rk) × P(M)k such that (1.1)

is satisfied in viscosity sense for weakly coupled systems of Hamilton-Jacobi equations and (1.2) is satisfied in

distributions sense.

Remark 1.1. Assumptions (H1), (H2) are the classical Tonelli conditions. When the coupling matrix satisfies

the condition (B), then for each m ∈ P(M)k, the viscosity solution of the weakly coupled system (1.1) is unique

by [9, Proposition 2.10]. The existence of the viscosity solution of the weakly coupled system (1.1) for fixed

m ∈ P(M)k is guaranteed by the Perron’s method for weakly coupled systems, see [24] for instance.

Theorem 1. Assume (H1)-(H3), (B) and (F1)(F2), then the system (1.1)-(1.3) admits at least one solution.

Remark 1.2. Comparing to [21], the dynamical meaning of the solution of the system (1.1)-(1.3) is weaker.

Fixing m ∈ P(M)k, there is a unique viscosity solution (um1 , . . . , u
m
k ) of (1.1). The viscosity solution is Lipschitz

continuous by (H2). The function umi is the unique viscosity solution of Hm
i (x,Du, u) = 0, where

Hm
i (x, p, u) := Hi(x, p) +Bii(x)u+

k∑
j=1,j 6=i

Bij(x)umj (x)− Fi(x,m) (1.5)

is only Lipschitz continuous in x. Therefore, the contact Hamiltonian flow of Hm
i is not well-defined. Following

[11], the Mather measures can be defined as the closed Borel probability measures supported in the Mather set,

see Definition 2.1 below. If (u,m) is a solution of (1.1)-(1.3), then for each i ∈ {1, . . . , k}, there is a Mather

measure corresponding to Hm
i (x, p, u) whose projection on M equals mi.

The mean field games was introduced by Lasry and Lions in [28–30] and by Caines, Huang and Malhamé
[22, 23] to analyze large population stochastic differential games. For the theory of first order mean field games,
we refer to [4–7, 14, 17, 20]. For the theory of stationary mean field games, we refer to [2, 16, 18, 19, 32].

We denote by Tn the n-dimensional flat torus. Let G : Tn × Rn → R be of class C2 and quadratic-like in
the second variable. The following ergodic first order mean field game system with x ∈ Tn was discussed in [4]

G(x,Du(x)) = c+ F (x,m),

− div
(
m
∂G

∂p
(x,Du(x))

)
= 0,∫

Tn

mdx = 1.

The system is a Hamilton-Jacobi equation coupled with a continuity equation. The scalar unknown function u is
defined on M , and the unknown m is a Borel probability measure define on M . The function F is a coupling
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between the two equations. The function u can be understood as the value of the cost functional or the objective
functional of a typical small player. The optimal feedback of this small player is then given by −∂G∂p (x,Du(x)).
When all players play according to this rule, their density of distribution m is governed by the second continuity
equation.

The following ergodic first order mean field game system of contact type was discussed in [21]

H(x,Du(x), u(x)) = F (x,m),

div
(
m
∂H

∂p
(x,Du(x), u(x))

)
= 0,∫

M

mdx = 1.

Here x ∈M and M is a compact connected and smooth Riemannian manifold without boundary. The function
H : T ∗M × R → R satisfies the standard dynamical assumptions, i.e., of class C3, superlinear and strictly
convex in p. The solution (u,m) of the system obtained in [21] has a clear dynamical meaning. More precisely,
there is a Mather measure of the contact Hamilton flow generated by H(x, p, u) whose projection on M equals
m. The dynamical tools used in [21] come from [35].

The system (1.4) is weakly coupled in the sense that every ith equation depends only on Dui, but not on
Duj for j 6= i. The standard assumption for (1.4) is so-called the monotonicity condition, which means Hi is
increasing in ui and nonincreasing in uj for j 6= i. More precisely, for any (x, p) ∈ T ∗M and u, v ∈ Rk, if
ul − vl = max1≤i≤k(ui − vi) ≥ 0, then Hl(x, p,u) ≥ Hl(x, p, v). When the coupling is linear, that is, when
Hi has the form

Hi(x, p,u) = hi(x, p) +

k∑
j=1

Bij(x)uj ,

the monotonicity condition holds if and only if

Bij(x) ≤ 0 if i 6= j and
k∑
j=1

Bij(x) ≥ 0 for all i ∈ {1, . . . , k}.

By [9, Proposition 1.2], if the coupling matrix (Bij(x)) is irreducible, then Bii(x) > 0 for every i ∈ {1, . . . , k}.
About the stationary weakly coupled systems, there are several topics of concern. For the existence theorems and
the comparison results of viscosity solutions, one can refer to [12, 24, 31]. For the weak KAM theory, one can
refer to [9]. For the vanishing discount problem, one can refer to [10, 25, 26].

Remark 1.3. When the coupling term
∑
j Bijuj vanishes, one may consider the following coupled system for

i ∈ {1 . . . , k} 
Hi(x,Dui(x)) = ci + Fi(x,m1, . . . ,mk), (1.6)

div
(
mi

∂Hi

∂p
(x,Dui(x))

)
= 0, (1.7)∫

M

midx = 1. (1.8)

From the view of differential games, the major players influence each other only through the mean field terms

in this case. The difficulty mentioned in Remark 1.2 does not appear. The proof of the existence of solutions

(c,u,m) is quite similar to the one in [4]. We provide an outline. Consider the set-vauled map Ψ : P(M)k ⇒



5

P(M)k. The set Ψ(m) := {(µ1, . . . , µk)}, where each µi is a projected Mather measures corresponding to

Hi(x,Dui(x))− Fi(x,m). Since the products of compact convex sets are still compact and convex, it remains

to check Ψ has a closed graph. This property is guaranteed by (H2) and (F2). Thus, Ψ admits a fixed point m̄ by

the Kakutani’s fixed point theorem. For m̄ = (m̄1, . . . , m̄k) ∈ P(M)k, there exists a solution (ui, ci) of (1.6)

by the classical theory of Hamilton-Jacobi equations, and the probability measure m̄i naturally satisfies (1.7).

When all Hi and Fi coincide, the system (1.6)-(1.8) can be reduced to the case considered in [4].

2 Proof of the main theorem

By [3, Corollary A.2.7], when Hi : T ∗M → R satisfies (H1)(H2), the corresponding Lagrangian Li :

TM → R is also Tonelli, i.e., of class C2, superlinear and strictly convex in the fibre. At the present, we denote
by H(x, p, u) the Hamiltonian defined in (1.5) for simplicity of notation, then it satisfies the basic assumptions
in [27], and is strictly increasing in u. Let λ := max1≤i≤k ‖Bii(x)‖∞ be the Lipschitz constant for H(x, p, u)

in u. The corresponding Lagrangian associated to H is

L(x, ẋ, u) = Li(x, ẋ)−Bii(x)u−
k∑

j=1,j 6=i

Bij(x)umj (x) + Fi(x,m), (2.1)

The following proposition holds when Hi(x, p) in (1.5) satisfies (H1)(H2).

Proposition 2.1. Let (u−, u+) be the conjugate pair defined in Proposition A.6, and I(u−,u+) be the correspond-

ing projected Aubry set. For x ∈ I(u−,u+), there exists a C1 curve γ : (−∞,∞)→M with γ(0) = x such that

u−(γ(t)) = u+(γ(t)), and

u±(γ(t′))− u±(γ(t)) =

∫ t′

t

L(γ(s), γ̇(s), u±(γ(s)))ds, ∀t ≤ t′ ∈ R. (2.2)

In addition, u± are differentiable at x with the same derivative

Du±(x) =
∂L

∂ẋ
(x, γ̇(0), u±(x)). (2.3)

We then define

Ĩ(u−,u+) := {(x, p, u) : x ∈ I(u−,u+), p = Du±(x), u = u±(x)}.

Both u− and u+ are of class C1 on I(u−,u+), or equivalently, the lift from I(u−,u+) to Ĩ(u−,u+) is continuous.

We divide the proof of Proposition 2.1 into Lemmas 2.1-2.4. In the following, we denote by d(x, y) the
distance between x and y induced by the Riemannian metric g on M . We also denote by | · |x the norms induced
by the Riemannian metric g on both tangent and cotangent spaces of M .

Lemma 2.1. If u ≺ L, then u is a Lipschitz continuous function defined on M .

Proof. For each x, y ∈ M , let α : [0, d(x, y)] → M be a geodesic of length d(x, y), with constant speed
|α̇|α = 1 and connecting x and y. Let CL denote the bound of L(x, ẋ, 0) for |ẋ|x ≤ 1. Then

L(α(s), α̇(s), u(α(s))) ≤ CL + λ‖u‖∞, ∀s ∈ [0, d(x, y)].
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Then by u ≺ L we have

u(y)− u(x) ≤
∫ d(x,y)

0

L(α(s), u(α(s)), α̇(s))ds ≤ (CL + λ‖u‖∞)d(x, y).

Exchanging the role of x and y, we get the Lipschitz continuity of u.

Lemma 2.2. Given a > 0. If u ≺ L, let γ : [−a, a]→M be a (u, L, 0)-calibrated curve, then γ is of class C1

and u is differentiable at γ(0).

Proof. By Lemma 2.1, for each i ∈ {1, . . . , k}, the backward weak KAM solution umi is Lipschitz continuous.
Thus, H(x, p, u) = Hm

i (x, p, u) is locally Lipschitz continuous in x. Since the following argument is local, we
identify TM with an open subset of Rn × Rn. Let ‖ · ‖ be a norm on Rn. For ‖v1‖ and ‖v2‖ less than R, there
exists a constant K > 0 such that

|L(x1, v1, u(x1))− L(x2, v2, u(x2))|

≤ |L(x1, v1, u(x1))− L(x1, v1, u(x2))|+ |L(x1, v1, u(x2))− L(x2, v2, u(x2))|

≤ λ‖Du(x)‖∞d(x1, x2) +K(d(x1, x2) + ‖v1 − v2‖).

Therefore (x, ẋ) 7→ L(x, ẋ, u(x)) is locally Lipschitz continuous. Note that L(x, ẋ, u) is strictly convex in ẋ,
by [8, Theorem 2.1 (ii)], the minimizer γ is a C1 curve.

The following argument is similar to [35, Lemma 4.3]. Since we are arguing locally near the point x := γ(0),
it suffices to prove the lemma for the case when M is an open subset U of Rn. We are going to show for each
y ∈ U , there holds

lim sup
η→0+

u(x+ ηy)− u(x)

η
≤ ∂L

∂ẋ
(x, γ̇(0), u(x)) · y ≤ lim inf

η→0+

u(x+ ηy)− u(x)

η
. (2.4)

For η > 0 and 0 < ε ≤ a, define γη : [−ε, 0] → U by γη(s) = γ(s) + s+ε
ε ηy, then γη(0) = x + ηy and

γη(−ε) = γ(−ε). Since γ is a (u, L, 0)-calibrated curve

u(x+ ηy)− u(γ(−ε)) ≤
∫ 0

−ε
L(γη(s), γ̇η(s), u(γη(s)))ds,

u(x)− u(γ(−ε)) =

∫ 0

−ε
L(γ(s), γ̇(s), u(γ(s)))ds.

It follows that

u(x+ ηy)− u(x)

η
≤ 1

η

∫ 0

−ε
(L(γη(s), γ̇η(s), u(γη(s)))− L(γ(s), γ̇(s), u(γ(s))))ds.

By the locally Lipschitz continuity of the map (x, ẋ) 7→ L(x, ẋ, u(x)), there exists K ′(‖γ̇(s)‖) such that

lim sup
η→0+

u(x+ ηy)− u(x)

η

≤ lim sup
η→0+

1

η

∫ 0

−ε
(L(γη(s), γ̇η(s), u(γη(s)))− L(γη(s), γ̇(s), u(γη(s))))

+ (L(γη(s), γ̇(s), u(γη(s)))− L(γ(s), γ̇(s), u(γ(s))))ds

≤
∫ 0

−ε
(
1

ε

∂L

∂ẋ
(γ(s), γ̇(s), u(γ(s))) · y +K ′(‖γ̇(s)‖)s+ ε

ε
‖y‖)ds.
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Let ε→ 0+, we get the first equality in (2.4). Similarly, define γη : [0, ε]→ U by γη(s) = γ(s) + ε−s
ε ηy , we

get the second equality in (2.4).

Lemma 2.3. Given a conjugate pair (u−, u+), for x ∈ I(u−,u+), there exists a C1 curve γ : (−∞,∞)→M

with γ(0) = x such that u−(γ(t)) = u+(γ(t)), and

u±(γ(t′))− u±(γ(t)) =

∫ t′

t

L(γ(s), γ̇(s), u±(γ(s)))ds, ∀t ≤ t′ ∈ R. (2.5)

In addition, u± are differentiable at x with the same derivative.

Proof. For x ∈ I(u−,u+), there is a (u−, L, 0)-calibrated curve γ− : (−∞, 0] → M with γ−(0) = x and a
(u+, L, 0)-calibrated curve γ+ : [0,+∞)→ M with γ+(0) = x, connecting these two curves, we get a curve
γ : (−∞,∞)→M with γ(0) = x.

According to the proof of [35, Lemma 4.7], we have u+(γ+(s)) = u−(γ+(s)) for s ≥ 0 and u+(γ−(s)) =

u−(γ−(s)) for s ≤ 0. Therefore γ is a (u±, L, 0)-calibrated curve defined on the whole R, i.e. the equality (2.5)
holds. By Lemma 2.2, γ is a C1 curve and Du±(x) = ∂L

∂ẋ (x, u±(x), γ̇(0)).

Lemma 2.4. The conjugate pair u− and u+ are both of class C1 on I(u−,u+).

Proof. By Lemma 2.1, u− is Lipschitz continuous. By [3, Theorem 5.3.7], if H(x, p, u) is locally Lipschitz
continuous and stictly convex in p, then u− is locally semiconcave. Similarly, since −u+ is a viscosity solution
of (A.3), it is also locally semiconcave. Equivalently u+ is locally semiconvex. Then by [3, Theorem 3.3.7], the
conjugate pair u− and u+ are both C1 on I(u−,u+).

Definition 2.1. Given a conjugate pair (u−, u+). The projected Mather setMH is defined as the limit set of the

calibrated curves passing through the points in I(u−,u+). By (2.3), we have

γ̇(0) =
∂H

∂p
(x,Du±(x), u±(x)). (2.6)

Since the viscosity solution u− is unique, and H is strictly convex in p, γ̇(0) is uniquely determined by the

position x. We then define the Mather set

M̃H := {(x, v) : x ∈MH , v =
∂H

∂p
(x,Du±(x), u±(x))} ⊂ TM.

Since Du±(x) is just continuous, the solution of the following ordinary differential equation

ẋ =
∂H

∂p
(x,Du±(x), u±(x))

may not be unique. Thus, we can not construct a flow on I(u−,u+) by γ. We define the Mather measures via the

closed measures. A closed measure µ on TM is defined by∫
TM

|v|xdµ(x, v) < +∞ and
∫
TM

dxϕ(v)dµ(x, v) = 0 ∀ϕ ∈ C1(M).

Here dx denotes the exterior differential with respect to x. The Mather measure can be defined as the closed

Borel probability measures supported in M̃H . Denote by MH the set of Mather measures. One can construct

Mather measures by closed calibrated curves in I(u−,u+).
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From now on, we denote byHm
i : T ∗M×R→ R the Hamiltonian defined as in (1.5), withHi(x, p) satisfies

(H1)-(H3). The unique viscosity solution of Hm
i (x,Du, u) = 0 is denoted by umi . The corresponding projected

Abury set, Mather set, projeted Mather set and the set of Mather measures are denoted by Ami , M̃m
i ,Mm

i and
Mm
i respectively.

Lemma 2.5. For any m ∈ P(M)k, define

Kmi := {(x, 0) ∈ TM : Hm
i (x, 0, umi (x)) = 0}.

Then Kmi is a nonempty compact subset of the Mather set M̃m
i and all points in it is fixed. Thus, the Mather

measures exist. Moreover, we have Kmi = M̃m
i .

Proof. The proof is quite similar to the proof of [21, Proposition 7 and 8]. Let (x, 0) ∈ Kmi . By (H3), the
Lagrangian corresponding to Hm

i satisfies

Lmi (x, 0, umi (x)) = sup
p∈T∗xM

(−Hm
i (x, p, umi (x)))

= − inf
p∈T∗xM

Hm
i (x, p, umi (x)) = Hm

i (x, 0, umi (x)) = 0.

Let γx(s) ≡ x for s ∈ (−∞, 0]. Then for all t < 0 we have

umi (x)− umi (γx(t)) =

∫ 0

t

Lmi (γx(s), γ̇x(s), umi (γx(s)))ds =

∫ 0

t

Lmi (x, 0, umi (x))ds = 0.

Thus, γx is a (umi , L
m
i , 0)-calibrated curve. By Proposition A.4, we have T+

t u
m
i (x) = umi (x). By Proposition

A.5, the limit limt→+∞ T+
t u

m
i (x) exists, and equals a forward weak KAM solution vmi of Hm

i (x,Du, u) = 0.
The pair (umi , v

m
i ) is a conjugate pair. Let t→ +∞, we have vmi (x) = umi (x), i.e., x ∈ Ami . By definition of

the Mather set, we have (x, 0) ∈ M̃m
i .

Since Hm
i is locally Lipschitz continuous, and strictly convex in p, the viscosity solution umi is semiconcave

on M by [3, Theorem 5.7]. Let x0 be a minimal point of umi , then umi is differentiable at x0 and Dumi (x0) = 0.
Since umi is a viscosity solution, we have Hm

i (x0, 0, u
m
i (x0)) = 0. Therefore, Kmi is nonempty.

It remains to proof Kmi ⊃ M̃m
i . Let γ(s) be a arbitrary trajectory contained inMm

i , we want to show it is a
fixed point. By the C1-regularity of uim|Am

i
and γ(s), combining with (2.6), we have

d

ds
umi (γ(s)) = 〈Dumi (γ(s)), γ̇(s)〉 = 〈Dumi (γ(s)),

∂Hi

∂p
(γ(s), Dumi (γ(s)))〉.

Since Mm
i is a limit set, the recurrence property of points in the Mather set still holds. The assumption

(H3) implies 〈p, ∂Hi/∂p〉 ≥ 0, and the equality holds if and only if p = 0. If Dumi (γ(s)) 6= 0, then
dumi (γ(s))/ds > 0, which contradicts the recurrence property of Mm

i . Thus, we have Dumi (γ(s)) = 0,
which implies that γ̇(s) = 0. Finally, we conclude that all points in M̃m

i have the form (x, 0), and satisfy
Hm
i (x, 0, umi (x)) = 0.

Lemma 2.6. For any m ∈ P(M)k, let um denote the unique viscosity solution of (1.1). Then um is uniformly

bounded and equi-Lipschitz with respect to m. Let mj ∈ P(M)k converges to m0 in the sense of dk, then umj

converges to um0 uniformly.
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Proof. By (B)(F1) and the boundedness of Hi(x, 0), there is a constant C large enough such that (C, . . . , C) and
(−C, . . . ,−C) are a supersolution and a subsolution of (1.1) for any m ∈ P(M)k. By the comparison principle
[9, Proposition 2.10], the constant C is the uniform bound of um. The Lagrangian L(x, ẋ, u) corresponding to
Hm
i (x, p, u), which is given by (2.1), is also uniformly bounded for |ẋ|x ≤ 1 with respect to m. Using a similar

argument as in Lemma 2.1, one can prove that um is equi-Lipschitz with respect to m. By the Arzelá-Ascoli
theorem, there is a subsequence umjk uniformly converges, with the limit point u∗. Let Hm

i be defined as in
(1.5). By (F2), H

mjk
i converges uniformly to

H∗i (x, p, u) := Hi(x, p) +Bii(x)u+

k∑
j=1,j 6=i

Bij(x)u∗j (x)− F (x,m0)

on compact subsets of T ∗M×R. By the stability of viscosity solutions, u∗ solves (1.1) with (m1, . . . ,mk) = m0.
By the uniqueness of the viscosity solution of (1.1) under the assumption (B), all limit points of {um} equals
um0 .

Proof of Theorem 1. By the Prokhorov’s theorem and the Tychonoff theorem, (P(M)k, dk) is compact and
convex. Let π : TM → M be the canonical projection, which induces the push forward π#. Define the
set-vauled map

Ψ : P(M)k ⇒ P(M)k,

where we define the set
Ψ(m) := {(π#η

m
1 , . . . , π#η

m
k ) : ηmi ∈Mm

i }.

One can easily check that Ψ has nonempty convex values by Lemma 2.5. In order to use the Kakutani’s fixed
point theorem, it remains to show that Ψ has a closed graph. Let dk(mj ,m)→ 0 and dk(µj , µ)→ 0 as j → +∞,
where µj ∈ Ψ(mj). We want to show µ ∈ Ψ(m).

Since µj ∈ Ψ(mj), there exist a sequence ηj with ηji ∈M
mj

i such that µji = π#η
j
i . By Lemmas 2.5, we

have
supp(ηji ) ⊂M × {0} =: K0, ∀i ∈ {1, . . . , k}, j ∈ N,

where supp stands for the support of Borel probability measures. Thus, the sequence ηji is tight. Up to a
subsequence if necessary, we may suppose that dk(ηj , η)→ 0 for some η ∈ P(M)k and µi = π#ηi for each
i ∈ {1, . . . , k}.

Now we show that ηi ∈Mm
i , which implies that µ ∈ Ψ(m). We first show that ηi is closed. The integral∫

TM
|v|xdηi is finite by the compactness of K0. By definition of K0 we have∫

TM

dxϕ(v)dηi =

∫
K0

dxϕ(v)dηi = 0, ∀ϕ ∈ C1(M),

which shows that ηi is closed.

Next, we show that supp(ηi) ⊂ Kmi . Since ηji converges to ηi in thew∗-topology, for any (x0, v0) ∈ supp(ηi),
there is a sequence (xj , vj) ∈ supp(ηji ) converging to it. By Lemma 2.5 and ηji ∈M

mj

i , we have vj = 0 and

H
mj

i (xj , 0, u
mj

i (xj)) =Hi(xj , 0) +Bii(xj)u
mj

i (xj)

+

k∑
j=1,j 6=i

Bij(xj)u
mj

j (xj)− F (xj ,mj) = 0.
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Let j → +∞, by Lemma 2.6 and (F1)(F2), we get that v0 = 0 and Hm
i (x0, 0, u

m
i (x0)) = 0. Therefore, Ψ has a

closed graph. We conclude that Ψ admits a fixed point m̄.

Let ū(x) = (ū1(x), . . . , ūk(x)) be the unique viscosity solution of the weakly coupled system (1.1) with
(m1, . . . ,mk) = m̄. Then there is a Mather measure η̄i such that π#η̄i = m̄i. Since η̄i is closed, for all
ϕ ∈ C1(M) we have

0 =

∫
TM

dxϕ(v)dη̄i =

∫
supp(η̄i)

dxϕ(v)dη̄i

=

∫
supp(m̄i)

〈Dϕ(x),
∂Hi

∂p
(x,Dūi(x))〉dm̄i =

∫
M

〈Dϕ(x),
∂Hi

∂p
(x,Dūi(x))〉dm̄i.

Hence, m̄ satisfies (1.2) in the sense of distribution. The proof is now complete.

A Facts on the contact Hamilton-Jacobi equation

In this section, we collect some facts given by [27] in view of the contact Hamiltonian H : T ∗M × R→ R
defined by (1.5). As mentioned in Remark 1.2, we have to deal with Hamiltonians which are just Lipschitz
continuous in x. Similar results can be founded in [34, 35] for C3 Hamiltonians. Let us consider the evolutionary
equation: {

∂tu(x, t) +H(x,Du(x, t), u(x, t)) = 0, (x, t) ∈M × (0,+∞).

u(x, 0) = ϕ(x), x ∈M.
(A.1)

and the stationary equation:
H(x,Du(x), u(x)) = 0. (A.2)

Since H(x, p, u) defined by (1.5) is strictly increasing in u, the viscosity solution of (A.2) is unique by the
comparison principle.

Proposition A.1. [27, Theorem 3.1] Let the initial data ϕ(x) ∈ LSC(M,R ∪ {+∞}), where LSC(M,R ∪
{∞}) denotes the set of lower semi-continuous functions, with values taken in R ∪ {+∞}. Then the lower

semi-continuous viscosity solution u ∈ LSC(M × [0,+∞),R ∪ {+∞}) of (A.1) in the sense of Barron-Jensen

exists, and is unique.

Proposition A.2. [27, Theorem 4.1 and Remark 6.3] Let ϕ(x) ∈ LSC(M,R ∪ {∞}), and let u be the Barren-

Jensen solution of (A.1). We denote by C(x, t, u) the set of absolutely continuous curves γ : [0, t] → M with

γ(t) = x and ∫ t

0

(|L(γ(τ), γ̇(τ), 0)|+ |u(γ(τ), τ)|)dτ < +∞.

Fix (x, t) ∈M × (0,+∞) so that u(x, t) < +∞, then

u(x, t) = min
γ∈C(x,t,u)

{
ϕ(γ(0)) +

∫ t

0

L(γ(τ), γ̇(τ), u(γ(τ), τ))dτ
}
,

and the minimum is attained. We define the backward solution semigroup T−t as the map t 7→ u(·, t). Define

F (x, p, u) := H(x,−p,−u)

and let T̄−t be the backward solution semigroup corresponding to F , then the forward solution semigroup

T+
t ϕ := −T̄−t (−ϕ) is also well-defined.
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Following Fathi [15], one can extend the definition of weak KAM solutions of equation (A.2) by using
absolutely continuous calibrated curves instead of C1 curves.

Definition A.1. A function u ∈ C(M) is called a backward (resp. forward) weak KAM solution of (A.2) if

(1) For each absolutely curve γ : [t′, t]→M , we have

u(γ(t))− u(γ(t′)) ≤
∫ t

t′
L(γ(s), γ̇(s), u(γ(s)))ds.

The above condition reads that u is dominated by L and denoted by u ≺ L.

(2) For each x ∈ M , there exists a absolutely continuous curve γ− : (−∞, 0]→ M with γ−(0) = x (resp.

γ+ : [0,+∞)→M with γ+(0) = x) such that

u(x)− u(γ−(t)) =

∫ 0

t

L(γ−(s), γ̇−(s), u(γ−(s)))ds, ∀t < 0.

(resp. u(γ+(t))− u(x) =

∫ t

0

L(γ+(s), γ̇+(s), u(γ+(s)))ds, ∀t > 0.)

The curves satisfying the above equality are called (u, L, 0)-calibrated curves.

The following proposition is well-known in the weak KAM theory, one can refer to [33, Lemma 6.2]. For the
existence of the calibrated curves, one can see [27, Lemma 6.6].

Proposition A.3. The following statements are equivalent: u− is a fixed point of T−t ; u− is a backward weak

KAM solution of (A.2); u− is a viscosity solution of (A.2). Similarly, the following statements are equivalent: v+

is a fixed point of T+
t ; v+ is a forward weak KAM solution of (A.2); −v+ is a viscosity solution of

F (x,Du(x), u(x)) = 0. (A.3)

Proposition A.4. [27, Lemma 6.7] Let γ− : (−∞, 0]→M be a (u−, L, 0)-calibrated curve, then T+
t u−(γ−(−t)) =

u−(γ−(−t)) for each t > 0.

Proposition A.5. [27, Theorem 6.4] Let u− be the unique viscosity solution of (A.2), then T+
t u− is nonincreasing

in t, and converges to a forward weak KAM solution u+ of (A.2) uniformly.

Proposition A.6. Define the projected Aubry set

I(u−,u+) := {x ∈M : u−(x) = u+(x)}.

This set is nonempty. We also have u− = limt→+∞ T−t u+. From weak KAM point of view, we call (u−, u+) a

conjugate pair.

Proof. Since u− is unique, by Proposition A.5, T−t u+ is nondecreasing in t and uniformly converges to the
unique backward weak KAM solution u−. Let γ− : (−∞, 0] → M be a (u−, L, 0)-calibrated curve. By
Proposition A.4, for each t > 0 we have T+

t u−(γ−(−t)) = u−(γ−(−t)). Since M is compact, let x∗ ∈ M
such that d(γ−(−tn), x∗)→ 0 as tn → +∞. The following inequality holds

|T+
tnu−(γ−(−tn))− u+(x∗)| ≤|T+

tnu−(γ−(−tn))− u+(γ−(−tn))|

+ |u+(γ−(−tn))− u+(x∗)|.
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The function u+ is Lipschitz continuous (see Lemma 2.1). Thus, as tn → +∞,

|u+(γ−(−tn))− u+(x∗)| → 0.

Since T+
t u− converges to u+ uniformly, then

|T+
tnu−(γ−(−tn))− u+(γ−(−tn))| → 0.

Therefore, the limit of T+
tnu−(γ−(−tn)) is u+(x∗). On the other hand, we have

T+
tnu−(γ−(−tn)) = u−(γ−(−tn)),

which tends to u−(x∗) by the continuity of u−. We conclude that u+(x∗) = u−(x∗).
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[23] M. Huang, P. E. Caines and R. P. Malhamé. Large-population cost-coupled LQG problems with nonuniform

agents: Individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans. Automat. Control. 52:
1560-1571, 2007.

[24] H. Ishii and S. Koike. Viscosity solutions for monotone systems of second-order elliptic PDEs. Comm.
Partial Differential Equations, 16: 1095-1128, 1991.

[25] H. Ishii. The vanishing discount problem for monotone systems of Hamilton-Jacobi equations. Part 1: linear

coupling. Mathematics in Engineering, 3(4): 1-21, 2021.

[26] H. Ishii and L. Jin. The vanishing discount problem for monotone systems of Hamilton-Jacobi equations.

Part 2: nonlinear coupling. Calc. Var., 59(4): 1-28, 2020.



14

[27] H. Ishii, K. Wang, L. Wang and J. Yan. Hamilton-Jacobi equations with their Hamiltonians depending

Lipschitz continuously on the unkonwn. Comm. Partial Differential Equations, 47(2): 417-452, 2022.
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