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Abstract

Assume H = H(x, u, p) with (x, p) ∈ T ∗M and u ∈ S, is smooth and satisfies Tonelli conditions in p,
Lipschitz continuity condition in u, where M is a compact connected smooth manifold without boundary.
We find a compact interval [c1, c2] such that equation

H(x, u(x), ∂xu(x)) = c

has solutions if and only if c ∈ [c1, c2]. We also study the long-time behavior of the unique viscosity solution
uc of

∂tu(x, t) +H(x, u(x, t), ∂xu(x, t)) = c, u(x, 0) = ϕ(x) ∈ C(M,R).

If c ∈ [c1, c2], uc is bounded by a constant independent of c and Lipschitz with respect to the argument
x with a Lipschitz constant independent of c and ϕ. If c /∈ [c1, c2], then the long-time average of uc can
be characterized by a function c 7→ ρ(c) which admits a modulus of continuity. We obtain these results by
analyzing properties of a kind of one-parameter semigroups of operators. All the aforementioned results show
the fundamental difference between Hamilton-Jacobi equations with Hamiltonians H(x, u, p) and H̄(x, p).
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1 Introduction and main results1

The study of the theory of viscosity solutions [3] of Hamilton-Jacobi equations

∂tu(x, t) +H(x, u(x, t), ∂xu(x, t)) = 0 (1.1)

and

H(x, u(x), ∂xu(x)) = 0 (1.2)

has a long history. See, for instance, [5], [12], [14] and the references therein. We will deal only with viscosity2

solutions in this paper and thus we mean by “solutions” viscosity solutions. There are numerous results on the3

existence, uniqueness, stability, and long-time behavior problems for the above first-order partial differential4

equations, especially for those where H(x, u, p) does not contain the argument u, that is, the corresponding5

characteristic equations are classical Hamiltonian systems defined on symplectic manifolds.6

In view of the relationship between contact Hamiltonian systems and Hamilton-Jacobi equations (1.1) and7

(1.2), we call (1.1) and (1.2) contact Hamilton-Jacobi equations. The present paper is devoted to the study of the8

existence and long-time behavior of solutions of equations (1.1) and (1.2), respectively, where the Hamiltonian9

H(x, u, p) is 1-periodic in the argument u. To the best of our knowledge, little has been known about properties10

of solutions of these kinds of Hamilton-Jacobi equations, at least from the dynamical point of view. Our tools11

come from [21, 23, 24], where the authors extended part of Mather and weak KAM theories [17, 6] from classical12

Hamiltonian systems to contact Hamiltonian systems. An implicit variational principle [21] plays an essential13

role there. An alternative notable variational formulation was provided in [1, 2] in the light of Herglotz’ work14

[9, 10], which was given in an explicit form with nonholonomic constraints. Using the Herglotz’ variational15

principle, various kinds of representation formulas of solutions of (1.1) were obtained in [11]. See [8, 16, 18]16

for more on weak KAM type results for the dicounted Hamiltonian system, which is a special kind of contact17

Hamiltonain systems and has significant physical, optimal control and economics backgrounds.18

1.1 Assumptions19

AssumeM is a compact connected and smooth Riemannian manifold without boundary. LetH : T ∗M×R→20

R be a C3 function satisfying:21
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(H1) (Positive definiteness). For every (x, u, p) ∈ T ∗M × R, the second partial derivative ∂2H
∂p2

(x, u, p) is22

positive definite as a quadratic form.23

(H2) (Superlinearity). For every (x, u) ∈M × R, H(x, u, p) is superlinear in p.24

(H3) (Lipschitz continuity). There exists λ > 0 such that |∂H∂u (x, u, p)| ≤ λ for all (x, u, p) ∈ T ∗M × R.25

(H4) (Periodicity). H(x, u+ 1, p) ≡ H(x, u, p).26

Remark 1.1. Since results in this paper are based on the variational principle introduced in [21], which was27

proved under C3 assumption for a technical reason, we assume H(x, u, p) is of class C3 here.28

Remark 1.2. For convenience, we denote (x, p) ∈ T ∗M , u ∈ R, by (x, u, p) ∈ T ∗M × R. Assumptions (H1),29

(H2) are classical Tonelli conditions with respect to the argument p. It is clear that if H̄(x, p) is a classical30

Tonelli Hamiltonian, then the function (x, u, p) 7→ sin(2πu) + H̄(x, p) satisfies (H1)-(H4).31

Remark 1.3. Except for Section 2, we always assume (H1)-(H4). In Section 2, we will recall some preliminary32

results under more general assumptions (H1)-(H3).33

The Lagrangian L(x, u, ẋ) associated with H(x, u, p) is defined as

L(x, u, ẋ) := sup
p∈T ∗xM

{〈ẋ, p〉x −H(x, u, p)},

where 〈·, ·〉 represents the canonical pairing between the tangent space and cotangent space. Since H(x, u, p)34

satisfies (H1)-(H4), then one can deduce that35

(L1) (Positive definiteness). For every (x, u, ẋ) ∈ TM×R, the second partial derivative ∂2L
∂ẋ2

(x, u, ẋ) is positive36

definite as a quadratic form.37

(L2) (Superlinearity). For every (x, u) ∈M × R, L(x, u, ẋ) is superlinear in ẋ.38

(L3) (Lipschitz continuity). There exists λ > 0 such that |∂L∂u (x, u, ẋ)| ≤ λ for all (x, u, ẋ) ∈ TM × R.39

(L4) (Periodicity). L(x, u+ 1, ẋ) ≡ L(x, u, ẋ).40

1.2 Main results41

Our first main result deals with the existence problem for stationary equations. We characterize the real42

numbers c for which equation (E) below admits solutions in the following way.43

Main Result 1. There exist c1, c2 ∈ R with c1 ≤ c2, such that the stationary equation44

H(x, u(x), ∂xu(x)) = c (E)

has solutions if and only if c ∈ [c1, c2].45

Remark 1.4. Consider a special case of (E)46

1

2
(u′)2 − cosu = c, x ∈ T1, (1.3)

which can be derived by the Sine-Laplace equation47

u′′ + sinu = 0.

According to [4, Proposition 3.2], (1.3) admits solutions when c ∈ [−1, 1].48
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Remark 1.5. Recall that for classical Tonelli Hamiltonian H̄(x, p), there is a unique real number c such that
the stationary Hamitlon-Jacobi equation

H̄(x, ∂xu(x)) = c (HJ)

has solutions. The number c is called the effective Hamiltonian [13] or Mañé critical value [15]. For H(x, u, p)49

satisfying (H1)-(H3), it was proved in [23] that there exists a constant c such that equation (E) has solutions.50

But the structure of the set C of all such c’s was not discussed there. The set C can be a singleton, a compact51

interval, an infinite interval, or even R. This is an essential difference between equation (E) and equation (HJ).52

Our approach is dynamical in nature and the analysis of properties of a kind of one-parameter semigroups of53

operators plays an essential role in the proof of Main Result 1. Wang, Wang and Yan [21] provided a variational54

principle for contact Hamiltonian systems55 

ẋ =
∂H

∂p
(x, u, p),

ṗ = −∂H
∂x

(x, u, p)− ∂H

∂u
(x, u, p)p,

u̇ =
∂H

∂p
(x, u, p) · p−H(x, u, p),

(1.4)

where the Hamiltonian H satisfies (H1)-(H3). The variational principle can be regarded as a contact counterpart56

of Tonelli variational principle for classical Hamiltonian systems. Based on the variational principle, they [23]57

introduced two kinds of Lax-Oleinik type solution semigroups of evolutionary equations (C) below, denoted by58

{T±t }t≥0. We continue to use {T−t }t≥0 to study the long-time behavior of solutions of Cauchy problem (C) in59

the following.60

Let us look back at the history of the study of the long-time behavior of solutions of Hamilton-Jacobi
equations using the Lax-Oleinik semigroup and dynamical methods. Fathi [6] introduced the Lax-Oleinik
semigroups for the classical Hamiltonian system

ẋ =
∂H̄

∂p
(x, p)

ṗ = −∂H̄
∂x

(x, p)

to establish the weak KAM theory connecting Mather theory [17] and the theory of solutions of Hamilton-Jacobi
equations (HJ) and

∂tu(x, t) + H̄(x, ∂xu(x, t)) = 0, (1.5)

whose solutions can be represented by the Lax-Oleinik semigroup. Fathi showed the convergence of u(x, t) + ct61

as t approaches infinity by showing the convergence of the Lax-Oleinik semigroup, where u(x, t) is an arbitrary62

solution of (1.5) and c is the Mañé critical value of H̄ . After this, lots of interesting work appeared in this63

direction. See, for example, [12] and references therein for more details. It is worth mentioning that the Lax-64

Oleinik semigroup may not converge for time-periodic Hamiltonian H̄(t, x, p). The second author of this paper65

analyzed the long-time behavior of solutions of Hamilton-Jacobi equations with time-periodic Hamiltonian66

H̄(t, x, p) by introducing the notion of optimal asymptotic bounds [22]. The second and third authors of this67
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paper introduced a new kind of operators with convergence for time-periodic Hamiltonian H̄(t, x, p) in [19, 20].68

Using this new kind of operators, one can get all solutions of the corresponding Hamilton-Jacobi equations.69

The second main result concerns with the long-time behavior of solutions of evolutionary equations. Let70

uc(x, t) denote the unique solution of the Cauchy problem71 {
∂tu(x, t) +H(x, u(x, t), ∂xu(x, t)) = c, (x, t) ∈M × (0,+∞),

u(x, 0) = ϕ(x), x ∈M.
(C)

Main Result 2. Let ϕ ∈ C(M,R) and c ∈ [c1, c2]. Then72

(1) There exists a constant K1 > 0 depending only on the initial data ϕ and H , such that

|uc(x, t)| ≤ K1, ∀x ∈M, ∀t ≥ 0.

(2) There exists a constant K2 > 0 depending only on H , such that

ess sup
x∈M

|∂xuc(x, t)| ≤ K2, ∀t > 1.

Remark 1.6. This result guarantees the boundedness of uc and provides a Lipschitz estimate of uc with respect73

to the argument x. When H is strictly increasing in the argument u, uc converges to the unique solution of (E)74

for all initial data ϕ [24].75

At last, we consider the long-time behavior of the solution of the evolutionary equation when c /∈ [c1, c2].76

We prove the third main result using an interesting connection between the Lax-Oleinik semigroup and the77

homeomorphisms of the circle. The third main result also shows the essential difference between equations (1.5)78

and (C).79

Main Result 3. Let ϕ ∈ C(M,R) and c /∈ [c1, c2]. Then80

(1) The limit limt→+∞ u
c(x, t)/t =: ρ(c) exits and is independent of ϕ and x.81

(2) The function (x, t) 7→ |uc(x, t)− ρ(c)t| is bounded on M × [1,+∞) by a constant depending only on c.82

(3) The function c 7→ ρ(c) is nondecreasing and continuous with a modulus locally. More precisely, for each83

compact connected interval I ⊂ (−∞, c1) ∪ (c2,+∞), and [c′′, c′] ⊂ I with c′′ < c′, we have84

0 ≤ ρ(c′)− ρ(c′′) ≤ ω(c′ − c′′).

Here ω is a nondecreasing real function depending on I , and satisfying limr→0+ ω(r) = 0.85

Remark 1.7. The function ρ : (−∞, c1) ∪ (c2,+∞) → R can be extended to the whole real line R. The86

extended function is still nondecreasing and continuous with a modulus locally. When c ∈ [c1, c2], we have87

ρ(c) ≡ 0 by Main Result 2 (1).88

The rest of the paper is organized as follows. Section 2 gives the basic definitions and preliminaries required89

for our subsequent work. In Section 3, we show Main Results 1, 2 and 3.90
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2 Preliminaries91

We list notations which will be used later in the present paper.92

2.1 Notations93

• diam(M) denotes the diameter of M .94

• Denote by d the distance induced by the Riemannian metric g on M .95

• Denote by ‖ · ‖ the norms induced by g on both tangent and cotangent spaces of M .96

• C(M,R) stands for the space of continuous functions on M , ‖ · ‖∞ denotes the supremum norm on it.97

• ess supM |f(x)| stands for the essential supremum of f(x) on M .98

• For each t ∈ R, {t} = t (mod 1) denotes the fractional part of t and [t] denotes the greatest integer not99

greater than t.100

• Given a, b, δ, T ∈ R with a < b, 0 < δ < T , let101

Ωa,b,δ,T := M × [a, b]×M × [δ, T ].

All the results in this section come from [21, 23], and hold true under assumptions (H1)-(H3).102

2.2 Variational principle and action functions103

Proposition 2.1. (Implicit variational principle). For any given x0 ∈ M and u0 ∈ R, there exists a unique104

continuous function hx0,u0(x, t) defined on M × (0,+∞) satisfying105

hx0,u0(x, t) = u0 + inf
γ(t)=x
γ(0)=x0

∫ t

0
L(γ(τ), hx0,u0(γ(τ), τ), γ̇(τ))dτ, (2.1)

where the infimum is taken among the Lipschitz continuous curves γ : [0, t] → M and can be achieved. Any
minimizer is of class C1. Let γ be a minimizer and

x(s) := γ(s), u(s) := hx0,u0(x(s), s), p(s) :=
∂L

∂ẋ
(x(s), u(s), ẋ(s)).

Then (x(s), u(s), p(s)) satisfies the contact Hamilton’s equations (1.4) with x(0) = x0, x(t) = x and106

lims→0− u(s) = u0.107

Functions (x0, u0, x, t) 7→ hx0,u0(x, t) are called implicit action functions. The following properties of108

hx0,u0(x, t) are very useful in the following.109

Proposition 2.2. (Monotonicity property I). For any given x0 ∈M and u1, u2 ∈ R, we have

u1 < u2 ⇒ hx0,u1(x, t) < hx0,u2(x, t), ∀(x, t) ∈M × (0,+∞).
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Proposition 2.3. (Monotonicity property II). Given two functions L1 and L2 satisfying (L1)-(L3), x0 ∈M and110

u0 ∈ R, if L1 < L2, then hL1
x0,u0(x, t) < hL2

x0,u0(x, t) for all (x, t) ∈M × (0,+∞), where hLix0,u0(x, t) denotes111

the implicit action function associated with Li, i = 1, 2.112

Proposition 2.4. (Markov property). For any given x0 ∈M and u0 ∈ R, we have

hx0,u0(x, t+ s) = inf
y∈M

hy,hx0,u0 (y,t)(x, s), ∀t, s > 0, ∀x ∈M.

Moreover, the infimum is attained at y if and only if there is a minimizer γ of hx0,u0(x, t+ s) such that γ(t) = y.113

Proposition 2.5. (Local Lipschitz continuity). Given a, b, δ, T ∈ R with a < b and 0 < δ < T , the function114

(x0, u0, x, t) 7→ hx0,u0(x, t) is Lipschitz continuous on Ωa,b,δ,T .115

For each c ∈ R, since L+ c satisfies all the assumptions imposed on L, then the variational principle and116

all the results established for L are still correct for L + c. Denote by hcx0,u0(x, t) the implicit action function117

associated with L+ c.118

Proposition 2.6. (Monotonicity property III). Given x0 ∈ M , u0 ∈ R and c1, c2 ∈ R, if c1 < c2, then119

hc1x0,u0(x, t) < hc2x0,u0(x, t) for all (x, t) ∈M × (0,+∞).120

Proposition 2.7. Given a, b, δ, T ∈ R with a < b and 0 < δ < T , for any (x0, u0, x, t) ∈ Ωa,b,δ,T and
c1, c2 ∈ R, we have

|hc1x0,u0(x, t)− hc2x0,u0(x, t)| ≤ eλtt|c1 − c2| ≤ eλTT |c1 − c2|,

where λ is as in (L3).121

2.3 Solution semigroups122

The authors of [23] introduced two kinds of solution semigroups, denoted by {T−t }t≥0 and {T+
t }t≥0, which123

are called backward solution semigroup and forward solution semigroup, respectively. In this paper, since we124

will only use {T−t }t≥0, we denote {T−t }t≥0 by {Tt}t≥0 for brevity in the following.125

Proposition 2.8. (Solution semigroup). There is a unique semigroup of operators {Tt}t≥0 : C(M,R)	 such
that

Ttϕ(x) = inf
γ(t)=x

{
ϕ(γ(0)) +

∫ t

0
L(γ(τ), Tτϕ(γ(τ)), γ̇(τ))dτ

}
,

where the infimum is taken among the Lipschitz continuous curves γ : [0, t] → M with γ(t) = x and can
be achieved. For each ϕ ∈ C(M,R), the function (x, t) 7→ Ttϕ(x) is the unique solution of ∂tu(x, t) +

H(x, u(x, t), ∂xu(x, t)) = 0 with u(x, 0) = ϕ(x). Furthermore,

Ttϕ(x) = inf
y∈M

hy,ϕ(y)(x, t), ∀(x, t) ∈M × [0,+∞),

where h is the implicit action function obtained in Proposition 2.1.126

Proposition 2.9. Given ϕ,ψ ∈ C(M,R), we have127

(1) if ϕ < ψ, then Ttϕ < Ttψ for all t ≥ 0.128
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(2) the function (x, t) 7→ Ttϕ(x) is locally Lipschitz on M × (0,+∞).129

Denote by T ct ϕ(x) the solution semigroup associated with L+ c.130

Proposition 2.10. Given ϕ ∈ C(M,R), let

c1 := sup{c | inf
(x,t)∈M×[0,+∞)

T ct ϕ(x) = −∞}, c2 := inf{c | sup
(x,t)∈M×[0,+∞)

T ct ϕ(x) = +∞}.

Then −∞ ≤ c1 < +∞ and −∞ < c2 ≤ +∞. Moreover, c1 ≤ c2.131

3 Proofs of Main Results132

Before giving the proofs of Main Results 1, 2, 3, we show a Lipschitz estimate for implicit action functions133

first.134

3.1 Lipschitz estimate135

Lemma 3.1. For any given c ∈ R, n ∈ Z, and ϕ ∈ C(M,R),136

T ct (ϕ+ n)(x) = T ct ϕ(x) + n, ∀(x, t) ∈M × [0,+∞).

Proof. By definition, we have

T ct ϕ(x) + n = inf
γ(t)=x

{
ϕ(γ(0)) + n+

∫ t

0
L(γ(τ), T cτϕ(γ(τ)), γ̇(τ))dτ + ct

}
,

where the infimum is taken among the Lipschitz continuous curves γ : [0, t]→ M with γ(t) = x. In view of137

(L4) and Proposition 2.8, we get that138

T ct ϕ(x) + n = inf
γ(t)=x

{
ϕ(γ(0)) + n+

∫ t

0
L(γ(τ), T cτϕ(γ(τ)) + n, γ̇(τ))dτ + ct

}
= T ct (ϕ+ n)(x).

139

For any given ϕ ∈ C(M,R), recall that140

c1 := sup{c | inf
(x,t)∈M×[0,+∞)

T ct ϕ(x) = −∞}, c2 := inf{c | sup
(x,t)∈M×[0,+∞)

T ct ϕ(x) = +∞}, (3.1)

and −∞ ≤ c1 < +∞, −∞ < c2 ≤ +∞, c1 ≤ c2.141

Lemma 3.2. Let ϕ ∈ C(M,R). Both c1 and c2 are real numbers. The function (x, t) 7→ T ct ϕ(x) is bounded on142

M × [0,+∞) if c belongs to the finite interval (c1, c2).143

Proof. We prove the first assertion first. If we can find a real number c′ such that

sup
M×[0,+∞)

T c
′
t ϕ(x) = +∞, (3.2)
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then by the definition of c2, one can deduce that c2 ∈ R. Let c′′ denote an arbitrary real number, if c1 = −∞;144

c′′ = c1 + 1, if c1 ∈ R. Then by the definition of c1, it is clear that infM×[0,+∞) T
c′′
t ϕ(x) > −∞.145

Let c′ = λ+ c′′ + 1. Let γ : [0, t]→M be a minimizer of T c
′
t ϕ(x) with γ(t) = x. We have

T c
′
t ϕ(x)− T c′′t ϕ(x) ≥ ϕ(γ(0)) +

∫ t

0
L(γ(τ), T c

′
τ ϕ(γ(τ)), γ̇(τ))dτ + c′t

− ϕ(γ(0))−
∫ t

0
L(γ(τ), T c

′′
τ ϕ(γ(τ)), γ̇(τ))dτ − c′′t

≥ −λ
∫ t

0
|T c′t ϕ(γ(τ))− T c′′t ϕ(γ(τ))|(mod 1)dτ + (c′ − c′′)t

≥ t,

implying (3.2) holds. Thus, c2 ∈ R. Since the proof of c1 ∈ R is quite similar to the one of c2 ∈ R, we omit it146

for brevity.147

The second assertion is a direct consequence of the definitions of c1, c2 and the first assertion.148

Lemma 3.3. Both c1 and c2 depend only on H .149

Proof. We aim to prove that the values of c1 and c2 do not depend on the initial data ϕ. Fix ϕ0 ∈ C(M,R), let150

c1 and c2 be defined as in (3.1) with ϕ = ϕ0. Given any φ ∈ C(M,R), there exist n1, n2 ∈ Z such that151

ϕ0 + n1 ≤ φ ≤ ϕ0 + n2.

By Proposition 2.9 and Lemma 3.1, we get that

T ct ϕ0 + n1 ≤ T ct φ ≤ T ct ϕ0 + n2, ∀c ∈ R, ∀t ≥ 0. (3.3)

If c > c2, then supM×[0,+∞) T
c
t ϕ0(x) + n1 = +∞. By the first inequality in (3.3), we get152

sup
M×[0,+∞)

T ct φ(x) = +∞.

If c < c2, then supM×[0,+∞) T
c
t ϕ0(x)+n2 < +∞. By the second inequality in (3.3), we have supM×[0,+∞) T

c
t φ(x) <153

+∞. So, we deduce that c2 = inf{c | sup(x,t)∈M×[0,+∞) T
c
t φ(x) = +∞}, which means c2 is independent of154

the initial data φ. The assertion for c1 can be obtained in a similar manner.155

156

Given a, b, δ, T ∈ R with a < b and 0 < δ < T , recall that157

Ωa,b,δ,T := M × [a, b]×M × [δ, T ].

Lemma 3.4. Let c1 and c2 be defined as in (3.1). There is a constant Ca,b,δ,T > 0, such that

|hcx0,u0(x, t)| ≤ Ca,b,δ,T , ∀(x0, u0, x, t) ∈ Ωa,b,δ,T , ∀c ∈ (c1, c2),

where Ca,b,δ,T depends only on a, b, δ and T .158
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Proof. Let

k =
diam(M)

δ
, A = sup

‖ẋ‖≤k
L(x, 0, ẋ), B = inf

(x,ẋ)∈TM
L(x, 0, ẋ).

Boundedness from below. Given any (x0, u0, x, t) ∈ Ωa,b,δ,T , let γ : [0, t]→M be a minimizer of hcx0,u0(x, t)159

and uc(s) = hcx0,u0(γ(s), s), s ∈ [0, t]. Then uc(t) = hcx0,u0(x, t). We need to show that uc(t) is bounded below160

by a constant which depends only on a, b, δ and T , There are three possibilities:161

(i) uc(t) > 0. It is clear that uc(t) is bounded below by 0;162

(ii) uc(s) < 0, ∀s ∈ [0, t];163

(iii) there exists s0 ∈ [0, t] such that uc(s0) = 0 and uc(s) ≤ 0, ∀s ∈ [s0, t].164

Case (ii): Note that uc satisfies

u̇c(s) = L(γ(s), uc(s), γ̇(s)) + c ≥ L(γ(s), 0, γ̇(s)) + λuc(s) + c ≥ B + λuc(s) + c1, ∀s ∈ [0, t]

and uc(0) = u0 ∈ [a, b]. Consider the solution w1(s) of the following Cauchy problem

ẇ1(s) = B + λw1(s) + c1, w1(0) = u0.

It is easy to see that w1(s) = u0e
λs + B+c1

λ (eλs − 1). Using the comparison theorem of solutions of ordinary
differential equations, we have

uc(t) ≥ w1(t) = u0e
λt +

B + c1

λ
(eλt − 1) ≥ −|a|eλT − |B + c1|

λ
(eλT − 1).

Case (iii): In this case, u̇c(s) ≥ B + λuc(s) + c1 for s ∈ [s0, t] and uc(s0) = 0. Let w2(s) be the solution
of the following Cauchy problem

ẇ2(s) = B + λw2(s) + c1, w2(s0) = 0.

Then w2(s) = B+c1
λ

(
eλ(s−s0) − 1

)
. Thus, we have

uc(t) ≥ w2(t) =
B + c1

λ

(
eλ(t−s0) − 1

)
≥ −|B + c1|

λ

(
eλT − 1

)
.

Therefore, we get

hcx0,u0(x, t) ≥ −|a|eλT − |B + c1|
λ

(eλT − 1).

Boundedness from above. Civen any (x0, u0, x, t) ∈ Ωa,b,δ,T , letα : [0, t]→M be a geodesic between x0 and
x with ‖α̇‖ = d(x0, x)/t ≤ diam(M)/δ = k. Let vc(s) = hcx0,u0(α(s), s), s ∈ [0, t]. Then vc(t) = hcx0,u0(x, t)

and vc(0) = u0. Note that

vc(s2)− vc(s1) ≤
∫ s2

s1

(
L(α(s), vc(s), α̇(s)) + c

)
ds, 0 ≤ s1 ≤ s2 ≤ t.

Thus, we get
v̇c(s) ≤ L(α(s), vc(s), α̇(s)) + c ≤ L(α(s), 0, α̇(s)) + λ|vc(s)|+ c2.

We need to show that vc(t) is bounded from above by a constant which depends only on a, b, δ and T . There are165

three possibilities:166
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(1) vc(t) < 0. In this case, vc(t) is bounded from above by 0;167

(2) vc(s) > 0, ∀s ∈ [0, t];168

(3) there exists s′ ∈ [0, t] such that vc(s′) = 0 and vc(s) ≥ 0, ∀s ∈ [s′, t].169

Case (2): Since vc > 0 for all s ∈ [0, t], then

v̇c(s) ≤ L(α(s), 0, α̇(s)) + λ|vc(s)|+ c2 ≤ A+ λvc(s) + c2,

and vc(0) = u0. Let w3(s) be the solution of the following Cauchy problem

ẇ3(s) = A+ λw3(s) + c2, w3(0) = u0.

One can easily obtain that w3(s) = u0e
λs + A+c2

λ (eλs − 1). Thus, we get

vc(t) ≤ w3(t) = u0e
λt +

A+ c2

λ
(eλt − 1) ≤ |b|eλT +

|A+ c2|
λ

(eλT − 1).

Case (3): In this case v̇c(s) ≤ A+ λvc(s) + c2, for s ∈ [s′, t] and vc(s′) = 0. Let w4(s) be the solution of
the following Cauchy problem

ẇ4(s) = A+ λw4(s) + c2, w4(s′) = 0.

Then w4(s) = A+c2
λ

(
eλ(s−s′) − 1

)
. Using the comparison theorem of solutions of ordinary differential equa-

tions, we have

vc(t) ≤ w4(t) =
A+ c2

λ

(
eλ(t−s′) − 1

)
≤ |A+ c2|

λ

(
eλT − 1

)
.

Hence, we have

hcx0,u0(x, t) ≤ |b|eλT +
|A+ c2|

λ
(eλT − 1).

170

Lemma 3.5. Let c1 and c2 be defined as in (3.1). There is a constant Ka,b,δ,T > 0 such that for any
(x0, u0, x, t) ∈ Ωa,b,δ,T , any c ∈ (c1, c2), any minimizer γ of hcx0,u0(x, t), there holds

|hcx0,u0(γ(s), s)| ≤ Ka,b,δ,T , ∀s ∈ [0, t],

where Ka,b,δ,T depends only on a, b, δ and T .171

Proof. Boundedness from below. By similar arguments used in the first part of the proof of Lemma 3.4, one can172

show that hcx0,u0(γ(s), s) is bounded from below by a constant which depends only on a and T . We omit the173

details for brevity.174

Boundedness from above. We only need to show that there exists a constant Ka,b,δ,T > 0 independent of c
such that

hcx0,u0(γ(s), s) ≤ Ka,b,δ,T , ∀s ∈ [0, t].

Let uc(s) = hcx0,u0(γ(s), s), s ∈ [0, t] and uce = hcx0,u0(x, t). Let Ca,b,δ,T be as in the last Lemma. Then175

|uce| ≤ Ca,b,δ,T and there are two possibilities:176



12 Panrui Ni, Kaizhi Wang, Jun Yan

(1) uce > 0;177

(2) uce ≤ 0.178

Case (1): We assert that

uc(s) ≤ |B + c1|
λ

+

(
Ca,b,δ,T + 1 +

|B + c1|
λ

)
eλT , ∀s ∈ [0, t].

Otherwise, there would be s1 ∈ [0, t] such that

uc(s1) >
|B + c1|

λ
+

(
Ca,b,δ,T + 1 +

|B + c1|
λ

)
eλT .

Then there is s2 ∈ [0, t] such that uc(s2) = uce and

uc(s) > uce > 0, ∀s ∈ [s1, s2].

Note that for any s ∈ [s1, s2],

u̇c(s) = L(γ(s), uc(s), γ̇(s)) + c ≥ L(γ(s), 0, γ̇(s))− λ|uc(s)|+ c1 ≥ B − λuc(s) + c1.

Let w(s) be the solution of the following Cauchy problem

ẇ(s) = B − λw(s) + c1, w(s1) = uc(s1).

Then w(s) = e−λ(s−s1)
(
uc(s1)− B+c1

λ

)
+ B+c1

λ . Thus, we get

uc(s2) ≥ w(s2) = e−λ(s2−s1)

(
uc(s1)− B + c1

λ

)
+
B + c1

λ
,

which together with uc(s1) > |B+c1|
λ +

(
Ca,b,δ,T + 1 + |B+c1|

λ

)
eλT implies

uc(s2) > uce + 1.

a contradiction. Hence, the assertion is true.179

Case (2): In this case, we assert that

uc(s) ≤ |B + c1|
λ

+

(
2 +
|B + c1|

λ

)
eλT , ∀s ∈ [0, t].

If the assertion is not true, there would be s1, s2 ∈ [0, t] such that

uc(s1) >
|B + c1|

λ
+

(
2 +
|B + c1|

λ

)
eλT , uc(s2) = 1,

and
uc(s) ≥ 1, ∀s ∈ [s1, s2].

Note that
u̇c(s) ≥ B − λuc(s) + c1, ∀s ∈ [s1, s2].
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Let v(s) be the solution of the following Cauchy problem

v̇(s) = B − λv(s) + c1, v(s1) = uc(s1).

Then v(s) = e−λ(s−s1)
(
uc(s1)− B+c1

λ

)
+ B+c1

λ . Thus, in view of uc(s1) > |B+c1|
λ +

(
2 + |B+c1|

λ

)
eλT and

u(s2) = 1, we have
uc(s2) > v(s2) > 1,

a contradiction.180

Lemma 3.6. Let c1 and c2 be as defined in (3.1). Let (x0, u0) ∈M × [a, b]. For any c ∈ (c1, c2), the function181

(x, t) 7→ hcx0,u0(x, t) is Lipschitz on M × [δ, T ], and the Lipschitz constant is independent of c.182

Proof. Let γ be a minimizer of hcx0,u0(x, t) and uc(s) = hcx0,u0(γ(s), s), s ∈ [0, t]. According to Lemma 3.5

|hcx0,u0(γ(s), s)| ≤ Ka,b,δ,T , ∀s ∈ [0, t].

Then from (L2) there is a constant D := Da,b,δ,T ∈ R such that

L(γ(s), uc(s), γ̇(s)) + c ≥ ‖γ̇(s)‖+D + c1, ∀s ∈ [0, t].

Choose Q := Qa,b,δ,T > 0 such that

a+Qδ − |D + c1|T > Ka,b,δ,T .

We assert that there is s0 ∈ [0, t] such that ‖γ̇(s0)‖ ≤ Q. If the assertion is not true, then ‖γ̇(s)‖ > Q, ∀s ∈ [0, t].
Since

u̇c(s) = L(γ(s), uc(s), γ̇(s)) + c ≥ ‖γ̇(s)‖+D + c1,

then ∫ t

0
u̇c(s)ds ≥

∫ t

0
(‖γ̇(s)‖+D + c1)ds.

Thus, we get

uc(t) ≥ u0 +Qt+Dt+ c1t ≥ a+Qt+Dt+ c1t > a+Qδ − |D + c1|T > Ka,b,δ,T ,

a contradiction.183

Thus, there is s0 ∈ [0, t] such that the bound of γ̇(s0) is independent of c. Note that

dH

ds
(γ(s), uc(s), p(s)) = −

(
H(γ(s), uc(s), p(s))− c

)∂H
∂u

(γ(s), uc(s), p(s)),

where c1 < c < c2. Let c0 = max{|c1|, |c2|}, by (H3) we get

|H(γ(s), uc(s), p(s))| ≤ (|H(γ(s0), uc(s0), p(s0))|+ c0) eλT − c0.

Then by (H2), we obtain that the bounds of ‖p(s)‖ and ‖γ̇(s)‖ are independent of c, depending only on a, b, δ184

and T .185
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(i) We first consider the Lipschitz property of hcx0,u0(x, t) with respect to x. Let γ(t) be a minimizer of
hcx0,u0(x, t) and ∆t = d(x, y). Then

hcx0,u0(y, t)− hcx0,u0(x, t) = hcx0,u0(y, t)− hcx0,u0(γ(t−∆t), t−∆t) + hcx0,u0(γ(t−∆t), t−∆t)− hcx0,u0(x, t).

Let A := hcx0,u0(y, t) − hcx0,u0(γ(t − ∆t), t − ∆t) and B := hcx0,u0(γ(t − ∆t), t − ∆t) − hcx0,u0(x, t). Let
α : [0,∆t]→M be a geodesic with constant speed connecting γ(t−∆t) and y. Then

‖α̇‖ =
d(γ(t−∆t), y)

d(x, y)
≤ d(γ(t−∆t), x) + d(x, y)

d(x, y)
= 1 +

d(γ(t−∆t), x)

d(x, y)
.

We will use Ji, i = 1, 2, 3, 4 to denote positive constants independent of c in the following. From d(γ(t −
∆t), x) ≤

∫ t
t−∆t ‖γ̇(s)‖ds, we deduce d(γ(t−∆t), x) ≤ J1∆t, since we have proved that ‖γ̇‖ is bounded by a

constant independent of c. Thus, ‖α̇(s)‖ is bounded by a constant independent of c. Hence

A ≤
∫ t

t−∆t
L(α(s), uc(α(s), s), α̇(s))ds ≤ J2d(x, y),

B = −
∫ t

t−∆t
L(γ(s), uc(γ(s), s), γ̇(s))ds ≤ J3d(x, y).

Combining the above two inequalities, we have hcx0,u0(y, t)−hcx0,u0(x, t) ≤ J4d(x, y). By exchanging the roles186

of x and y, we get |hcx0,u0(y, t)− hcx0,u0(x, t)| ≤ D1d(x, y), where D1 is independent of c.187

(ii) Next we prove the Lipschitz property of hcx0,u0(x, t) with respect to t. Let γ(t) be a minimizer of
hcx0,u0(x, t). Then we have

hcx0,u0(x, t)− hcx0,u0(x, s) = hcx0,u0(γ(s), s)− hcx0,u0(x, s) +

∫ t

s
L(γ(τ), uc(γ(τ), τ), γ̇(τ))dτ

≤ hcx0,u0(γ(s), s)− hcx0,u0(x, s) + J5(t− s).

From (i) we have

|hcx0,u0(γ(s), s)− hcx0,u0(x, s)| ≤ D1d(γ(s), x) ≤ D1

∫ t

s
‖γ̇(τ)‖dτ ≤ J6(t− s).

Here, J5, J6 are positive constants independent of c. Therefore, we get

|hcx0,u0(x, t)− hcx0,u0(x, s)| ≤ D2|t− s|,

where D2 is independent of c.188

By slight modification of the proof of Lemma 3.6, one can prove189

Corollary 3.1. Let (x0, u0) ∈M × [a, b]. For any c ∈ (p1, p2), the function (x, t) 7→ hcx0,u0(x, t) is Lipschitz190

on M × [δ, T ], and the Lipschitz constant is independent of c. More precisely, the Lipschitz constant depends on191

a, b, δ, T and p1, p2.192
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3.2 Proof of Main Result 1193

For c /∈ [c1, c2], since a function u is a solution of

H(x, u, ∂xu) = c (3.4)

if and only if u is a fixed point of {T ct }t≥0, then by the definitions of c1 and c2, equation (3.4) has no solutions.194

For c ∈ (c1, c2), in view of [23, Step 2 in the proof of Theorem 1.2], {T ct ϕ(x)}t≥1 is uniformly bounded195

and equi-Lipschitz on M , and196

ϕc∞(x) := lim inf
t→+∞

ϕc∞(x)

is a solution of (3.4). Note that H is 1-periodic in u and satisfies superlinear growth condition. From Lemma 3.3,197

c1, c2 depend only on H . Hence, ess supM |∂xϕc∞(x)| is bounded by a constant independent of c. Fix x0 ∈M ,198

let199

ϕ̃c∞(x) := ϕc∞(x)− [ϕc∞(x0)].

Then ϕ̃c∞ is still a solution of (3.4). Since ess supM |∂xϕ̃c∞(x)| is bounded by a constant independent of c and200

c ∈ (c1, c2), then ϕ̃c∞ is bounded by a constant independent of c. By Ascoli Lemma, there are {cn} ⊂ (c1, c2)201

and ϕ̃cn∞(x) ∈ C(M,R) such that c2 = limn→+∞ cn and the uniform limit202

u∗(x) := lim
n→+∞

ϕ̃cn∞(x)

exists. From the stability property of solutions, it is clear that u∗ is a solution of H(x, u, ∂xu) = c2. By similar203

arguments we can show that H(x, u, ∂xu) = c1 also admits solutions.204

3.3 Proof of Main Result 2205

(1) Let ui be an arbitrary solution of206

H(x, u, ∂xu) = ci, i = 1, 2.

For any ϕ ∈ C(M,R), there are Nϕ
i ∈ N such that207

ui −Nϕ
i ≤ ϕ ≤ ui +Nϕ

i .

Thus, we get208

ui −Nϕ
i ≤ T

ci
t ϕ ≤ ui +Nϕ

i , ∀t > 0.

Therefore, for any c ∈ [c1, c2], we have209

T c1t ϕ ≤ T ct ϕ ≤ T
c2
t ϕ, ∀t > 0,

which completes the proof of the first assertion.210

(2) For any c ∈ [c1, c2], since hcx0,u0+1(x, 1) = 1 + hcx0,u0(x, 1), then

|T ct ϕ(x)− T ct ϕ(y)| ≤ sup
z∈M
|hcz,T ct−1ϕ(z)(mod 1)(x, 1)− hcz,T ct−1ϕ(z)(mod 1)(y, 1)| ≤ l1d(x, y), ∀t > 1,

where the Lipschitz constant l1 independent of c comes from Lemma 3.6. The proof is complete.211
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3.4 Proof of Main Result 3212

We will prove the three results in Main Result 3 only for the case c > c2. By similar arguments, one can get213

the proof for the case c < c1.214

(1) Since 1 + hx0,u0(x, 1) = hx0,u0+1(x, 1), by Proposition 2.5 we have215

|T ct ϕ(x)− T ct ϕ(y)| ≤ sup
z∈M
|hcz,T ct−1ϕ(z)(x, 1)− hcz,T ct−1ϕ(z)(y, 1)|

= sup
z∈M
|hcz,T ct−1ϕ(z)(mod 1)(x, 1)− hcz,T ct−1ϕ(z)(mod 1)(y, 1)|

≤ lc1d(x, y), ∀t ≥ 1,

(3.5)

where lc1 is the Lipschitz constant of x 7→ hcx0,u0(x, 1), depending on c. For any given c > c2, the family of216

continuous functions {T ct ϕ(x)}t≥1 is equi-Lipschitz.217

We denote by Lip(lc1) ⊂ C(M,R) the set of Lipschitz continuous functions with Lipschitz constant lc1. By
(3.5), T c1 is an operator from Lip(lc1) to itself. For any ϕ1, ϕ2 ∈ Lip(lc1), from Proposition 2.8 there is z2 ∈M
such that

T c1ϕ1(x)− T c1ϕ2(x) ≤ hcz2,ϕ1(z2)(x, 1)− hcz2,ϕ2(z2)(x, 1) ≤ lcu0‖ϕ1 − ϕ2‖∞,

where lcu0 is the Lipschitz constant of the function u0 7→ hcx0,u0(x, 1) on [−A,A] andA := max{‖ϕ1‖∞, ‖ϕ2‖∞}.
By changing the roles of ϕ1 and ϕ2, it is clear that the map ϕ 7→ T c1ϕ is continuous. Thus, for each m ∈ N and
x ∈M , we can define

αm(x) = inf
ϕ∈Lip(lc1)

(T cmϕ(x)− ϕ(x)), βm(x) = sup
ϕ∈Lip(lc1)

(T cmϕ(x)− ϕ(x)).

We assert that αm(x) and βm(x) are well-defined. In fact, since the operator T c1 − id has Z-translation invariance,218

we can choose ϕ ∈ Lip(lc1) satisfying ϕ(x0) ∈ [0, 1), for some x0 ∈M . Then ‖ϕ‖∞ ≤ 1 + lc1diam(M). Denote219

the set of such functions by Bcx0 . This set of functions is uniformly bounded and equi-Lipschitz. So Bcx0 is a220

compact subset of C(M,R).221

Fix x0 ∈M , for any ϕ1, ϕ2 ∈ Bcx0 , we may assume that ϕ1(x0) ≤ ϕ2(x0) < ϕ1(x0) + 1. Then

ϕ1(x)− 2lc1diam(M) ≤ ϕ2(x) ≤ ϕ1(x) + 1 + 2lc1diam(M), ∀x ∈M.

We can take N c ∈ Z large enough (for example, N c = [2lc1diam(M)] + 1) such that

ϕ1 −N c ≤ ϕ2 ≤ ϕ1 + 1 +N c.

Note that N c depends only on c. For any m ∈ N, we get

T cmϕ1 −N c ≤ T cmϕ2 ≤ T cmϕ1 + 1 +N c.

Then
T cmϕ1 −N c − (ϕ1 + 1 +N c) ≤ T cmϕ2 − ϕ2 ≤ T cmϕ1 + 1 +N c − (ϕ1 −N c),

which implies

(T cmϕ1 − ϕ1)− (2N c + 1) ≤ T cmϕ2 − ϕ2 ≤ (T cmϕ1 − ϕ1) + (2N c + 1).



Viscosity solutions of contact Hamilton-Jacobi equations 17

Hence, we have
βm(x)− αm(x) ≤ 4N c + 2, ∀x ∈M.

For n ∈ N, n ≥ m, we have n = qm+ r, where 0 ≤ r < m. By definition, for any ϕ ∈ Lip(lc1), we have

αm(x) ≤ T cmϕ(x)− ϕ(x) ≤ βm(x), ∀x ∈M.

For p = 1, 2, · · · , q, we have

αm(x) ≤ T cpmϕ(x)− T c(p−1)mϕ(x) ≤ βm(x), ∀x ∈M.

When we sum p from 1 to q, we get222

qαm(x) ≤ T cqmϕ(x)− ϕ(x) ≤ qβm(x), ∀x ∈M. (3.6)

By (3.6), we have
qαm(x) ≤ T cqm+rϕ(x)− T crϕ(x) ≤ qβm(x), ∀x ∈M.

Taking m = 1 and q = r in (3.6), we get

rα1(x) ≤ T crϕ(x)− ϕ(x) ≤ rβ1(x), ∀x ∈M.

Adding the above two inequalities and dividing by n = qm+ r, we get

qαm(x) + rα1(x)

n
≤ T cnϕ(x)− ϕ(x)

n
≤ qβm(x) + rβ1(x)

n
, ∀x ∈M.

Note that the difference βm(x)− αm(x) ≤ 4N c + 2, which is independent of m. Let m→ +∞. Then the limit223

limn→+∞ T
c
nϕ(x)/n exists. Next, we show that this limit depends only on c.224

Fix ϕ0 ∈ Lip(lc1). For any ϕ ∈ C(M,R), there is n1, n2 ∈ Z such that

ϕ0(x) + n1 ≤ ϕ(x) ≤ ϕ0(x) + n2, ∀x ∈M.

Using Proposition 2.9, we have

T ct (ϕ0 + n1)(x) ≤ T ct ϕ(x) ≤ T ct (ϕ0 + n2)(x), ∀x ∈M.

By Lemma 3.1, we get

lim
n→∞

T cnϕ0(x)

n
= lim

n→∞

T cnϕ(x)

n
, ∀x ∈M.

Thus, the limit limn→+∞ T
c
nϕ(x)/n does not depend on ϕ.225

By Lipschitz continuity, for any x, y ∈M , we have

lim
n→∞

T cnϕ0(x)− lc1diam(M)

n
≤ lim

n→∞

T cnϕ0(y)

n
≤ lim

n→∞

T cnϕ0(x) + lc1diam(M)

n
,

Thus, the limit limn→+∞ T
c
nϕ(x)/n does not depend on x.226

We denote t = [t] + {t}, where the integral part [t] = n. Note that the limit limn→+∞ T
c
nϕ(x)/n does not

depend on the initial function, we have

lim
t→+∞

T ct ϕ(x)

t
= lim

t→+∞

T c[t] ◦ T
c
{t}ϕ(x)

[t]

[t]

t
= lim

n→+∞

T cnϕ(x)

n
.
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We denote by ρ(c) the limit limt→+∞
T ct ϕ(x)

t , which depends only on c.227

(2) Note that for any ϕ0 ∈ Lip(lc1), we have

nρ(c) = lim
m→+∞

T cnmϕ0(z)− ϕ0(z)

m
= lim

m→+∞

1

m

m−1∑
i=0

(T cn − id)(T cinϕ0(z)), ∀z ∈M.

Then228

|T cnϕ0(x)− (ϕ0(x) + nρ(c))| =

∣∣∣∣∣(T cn − id)ϕ0(x)− lim
m→∞

1

m

m−1∑
i=0

(T cn − id)T cinϕ0(x)

∣∣∣∣∣
≤ βn(x)− αn(x) ≤ 4N c + 2, ∀n ≥ 1.

(3.7)

Therefore, |T ct ϕ0(x) − ρ(c)t| is bounded on M × [1,+∞) by a constant depending only on c. For any ϕ ∈229

C(M,R), since M is compact, one can show |T ct ϕ(x) − ρ(c)t| is bounded on M × [1,+∞) by a constant230

depending only on c by using (3.7).231

(3) Now let us consider the properties of ρ(c). From Proposition 2.6, one deduce that the function c 7→ ρ(c)

is nondecreasing. For any c′, c′′ > c2 with c′ > c′′, any x ∈M , by Proposition 2.7, we get

0 < T c
′
n ϕ(x)− T c′′n ϕ(x) ≤ neλn

(
c′ − c′′

)
, ∀ϕ ∈ Lip (lc1) ,∀x ∈M

By the definitions of αm(x) and βm(x), for any given n ∈ N, we have

αn(x) ≤ T c′n ϕ(x)− ϕ(x) ≤ βn(x)

Hence, we have
αn(x)− neλn

(
c′ − c′′

)
≤ T c′′n ϕ(x)− ϕ(x) ≤ βn(x)

For any given k ∈ N+, note that

T cknϕ(x)− ϕ(x) =
k−1∑
j=0

T cn ◦ T cjnϕ(x)− T cjnϕ(x)

where T cjnϕ(x) ∈ Lip (lc1) for each j. Then we get

kαn(x)− kneλn
(
c′ − c′′

)
≤ T c∗knϕ(x)− ϕ(x) ≤ kβn(x), ∀ϕ ∈ Lip (lc1)

which holds true for both c∗ = c′ or c∗ = c′′. We have proved that the limit limn→+∞ T
c
t ϕ(x)/t exists. Thus,

we have

ρ(c) = lim
k→+∞

T cknϕ(x)

kn

Then
αn(x)− neλn (c′ − c′′)

n
≤ ρ (c∗) ≤ βn(x)

n

Hence, we get

0 ≤ ρ
(
c′
)
− ρ

(
c′′
)
≤ 4N c′ + 2 + neλn (c′ − c′′)

n
.

If c′, c′′ is contained in a compact interval I ⊂ (c2,+∞), by Corollary 3.1, N c′ is bounded by a constant232

NI depending only on I . Define N := [ c
′−c′′
e−λ

], the solution of teλt(c′ − c′′ − Ne−λ) = 1 is no less than 1.233
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The solution can be expressed as t = 1
λW ( λ

c′−c′′−Ne−λ ), where W is the Lambert function. In view of the234

arbitrariness of n, take n = [t]. Thus, we get that235

ρ(c′)− ρ(c′′ +Ne−λ) ≤ 4N c′ + 3

[ 1
λW ( λ

c′−c′′−Ne−λ )]
.

Note that

ρ(c′)− ρ(c′′) =ρ(c′)− ρ(c′′ +Ne−λ) +

N∑
k=1

(
ρ(c′′ + ke−λ)− ρ(c′′ + (k − 1)e−λ)

)
≤ 4NI + 3

[ 1
λW ( λ

c′−c′′−Ne−λ )]
+N(4NI + 3),

The modulus of continuity is defined by236

ω(r) := (4NI + 3)

 1

[ 1
λW ( λ

r−[ r

e−λ
]e−λ

)]
+ [

r

e−λ
]

 .
It is easy to check that ω(r) is nondecreasing and satisfies limr→0+ ω(r) = 0, which completes the proof.237
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