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Abstract

Consider the generalized discounted Hamilton-Jacobi equation

λa(x)u+H(x,Du) = c(H),

where a(x) may vanish or change the signs. Two examples are given in this paper showing
that the viscosity solutions of the above equation may not converge as λ tends to zero.
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1 Introduction and main results

The so-called ergodic approximation is a technique introduced in [10] to study the existence
of viscosity solutions of the Hamilton-Jacobi equation

H(x,Du(x)) = c (1.1)

on the standard torus Tn ' Rn/Zn. Here, H : Tn × Rn → R is a continuous function called the
Hamiltonian, and coercive in the second variable, D stands for the space gradient with respect to
x, and c is a real number. Let λ > 0 and uλ be the unique viscosity solution of

λu(x) +H(x,Du(x)) = 0.

According to [10], there is a sequence λk → 0+ such that −λkuλk(x) uniformly converges to
a constant c(H) and uλk −minx∈M uλk(x) uniformly converges to a viscosity solution of (1.1)
with c = c(H). Moreover, c(H) is the unique value such that (1.1) admits viscosity solutions.
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One can also refer to [6, Section 3] for a short self-contained proof. The constant c(H) is called
the Mañé critical value of H , which is characterized by

c(H) = min{c ∈ R : (1.1) admits subsolutions}.

Later, [4] proved the uniform convergence of the unique viscosity solution uλ of

λu(x) +H(x,Du(x)) = c(H), x ∈M

as λ→ 0+, where M is a compact connected manifold without boundary, and H is a continuous
Hamiltonian defined on the cotangent bundle over M , coercive and convex in the fibre. When the
convexity of H does not hold, [18] gives a counterexample showing that uλ does not converge.
In [5], the authors discussed the uniform convergence of the minimal viscosity solution of the
equation above as λ→ 0−. As a nonlinear generalization, [1, 2] and [16] consider the uniform
convergence of the unique viscosity solution of

Hλ(x,Du(x), u(x)) = c(G), x ∈M (1.2)

as λ→ 0+, where Hλ(x, p, u) is strictly increasing in u, and uniformly converges to G(x, p) as
λ→ 0+. As a degenerate case, [17] considers the convergence of the viscosity solution of

λa(x)u(x) +H(x,Du(x)) = c(H), x ∈M (1.3)

as λ→ 0+, where a(x) ≥ 0 on M , and a(x) > 0 on the projected Aubry set of H .

The present paper provides two examples showing that the viscosity solutions of the gen-
eralized discounted equation (1.3) may not converge. The first example comes from the non-
monotone model discussed in [9] and [12]. Theorem 1 shows that the asymptotic behavior of
the viscosity solutions of (1.3) can be complicated. So one can not expect that the results in the
classical vanishing discount problem still hold in the non-monotone cases.

Let x ∈ S1 ' [0, 2π). Define

H(x, p) = p2 + sinx− 1. (1.4)

By [5, Proposition 7], we have c(H) = 0 and the projected Aubry set of H is {π/2}.
Theorem 1. In (1.3), we take a(x) = sinx, and H(x, p) is given by (1.4). For λ ∈ R\{0}, (1.3)
becomes

λ sinx · u(x) + (u′(x))2 + sinx− 1 = 0. (1.5)

Then

(1) let Sλ be the set of the viscosity solutions of (1.5). When |λ| < W ( 2
π2+2

), we have
Sλ = {uλ, vλ}, where W is the inverse function of xex.

(2) the family {uλ} with uλ(π2 ) = 0 uniformly converges to a viscosity solution of

(u′(x))2 + sinx− 1 = 0 (1.6)

as λ tends to zero;
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(3) the family {vλ} with vλ(3π2 ) = − 2
λ

uniformly converges to −∞ (resp. +∞) as λ → 0+
(resp. λ→ 0−). Moreover, the family {vλ + 2

λ
} uniformly converges to a viscosity solution

of
(u′(x))2 − sinx− 1 = 0 (1.7)

as λ tends to zero.
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Figure 1: The solutions of (1.5) when |λ| < W ( 2
π2+2

).

Remark 1.1. Since Proposition 2.1 below is established under the assumption that M is an
n-dimensional manifold, we can generalize the conclusions in Theorem 1 (2) and (3). Consider

λ sin(x1 + · · ·+ xn) · u(x) +
n∑
i=1

(∂xiu(x))2 + sin(x1 + · · ·+ xn)− 1 = 0, (1.8)

where x = (x1, . . . , xn) ∈ Tn ' [0, 2π)n. Then ϕ0 ≡ 0 and ϕλ ≡ − 2
λ

are two subsolutions of
(1.8). Similar to the proof at the end of Section 2.1, the family

{uλ := lim
t→+∞

T λt ϕ0}

uniformly converges to a viscosity solution of

n∑
i=1

(∂xiu(x))2 + sin(x1 + · · ·+ xn)− 1 = 0,

while the family
{vλ := lim

t→+∞
T λt ϕλ}

is divergent as λ tends to zero. Here both uλ and vλ are viscosity solutions of (1.8).
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The second example shows that the convergence of the viscosity solutions of (1.3) does not
hold when a(x) ≥ 0 and a(x) = 0 for some x in the projected Aubry set of H .

Proposition 1.1. Let a(x) = 1− sinx and H(x, p) be given by (1.4). For λ > 0, (1.3) becomes

λ(1− sinx) · u(x) + (u′(x))2 + sinx− 1 = 0. (1.9)

The function a(x) satisfies a(x) ≥ 0 and a(π/2) = 0. One can check that the constant function
vλ ≡ 1/λ is a classical solution of (1.9), which tends to +∞ as λ→ 0+. At the same time, the
constant function ϕ0 ≡ 0 is a subsolution of (1.9). By Proposition 2.1 below, there is a family

{uλ := lim
t→+∞

T λt ϕ0}

uniformly converges to a viscosity solution of (1.6), where uλ is a viscosity solution of (1.9).

2 Proof of Theorem 1

2.1 Existence of the convergent family

In this section, we prove the existence of the convergent families {uλ} and {vλ + 2
λ
} in

Theorem 1. In order to show the generality of this phenomenon, we will prove this result under
more general assumptions.

Assume that M is a connected, closed (compact without boundary) and smooth Riemannian
manifold. Denote by TM and T ∗M the tangent and cotangent bundle over M respectively. Let
H : T ∗M × R→ R be a C3 function satisfying

(H1) Strict convexity: ∂
2H
∂p2

(x, p, u) is positive definite for all (x, p, u) ∈ T ∗M × R;

(H2) Superlinearity: for every (x, u) ∈M × R, H(x, p, u) is superlinear in p;

(H3) Lipschitz continuity: |∂H
∂u

(x, p, u)| ≤ 1 for all (x, p, u) ∈ T ∗M × R.

where (H1) and (H2) are referred to as the Tonelli conditions. The Lagrangian associated with
H(x, p, u) is defined as

L(x, ẋ, u) := sup
p∈T ∗xM

{〈ẋ, p〉x −H(x, p, u)},

where 〈·, ·〉x represents the canonical pairing between the tangent space and cotangent space.
According to [13, Page 494], the Lagrangian L : TM × R→ R satisfies

(L1) Strict convexity: ∂
2L
∂ẋ2

(x, ẋ, u) is positive definite for all (x, ẋ, u) ∈ TM × R;

(L2) Superlinearity: for every (x, u) ∈M × R, L(x, ẋ, u) is superlinear in ẋ;

(L3) Lipschitz continuity: |∂L
∂u

(x, ẋ, u)| ≤ 1 for all (x, ẋ, u) ∈ TM × R.
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We denote by C(M,R) the space of real valued continuous functions on M . According to
[14], there is a unique semigroup of operators {Tt}t≥0 : C(M,R)	 such that

Ttϕ(x) = inf
γ(t)=x

{
ϕ(γ(0)) +

∫ t

0

L(γ(τ), γ̇(τ), Tτϕ(γ(τ)))dτ
}
, (2.1)

where the infimum is taken among the Lipschitz continuous curves γ : [0, t]→M with γ(t) = x

and can be achieved. For each ϕ ∈ C(M,R), the function (x, t) 7→ Ttϕ(x) is the unique viscosity
solution of {

∂tu(x, t) +H(x,Du(x, t), u(x, t)) = 0, (x, t) ∈M × (0,+∞).

u(x, 0) = ϕ(x), x ∈M.

In [15], the authors defined the weak KAM solutions of

H(x,Du(x), u(x)) = 0, x ∈M. (2.2)

Definition 2.1. A function u ∈ C(M,R) is called a backward weak KAM solution of (2.2) if

(1) For each continuous piecewise C1 curve γ : [t′, t]→M , we have

u(γ(t))− u(γ(t′)) ≤
∫ t

t′
L(γ(s), γ̇(s), u(γ(s)))ds.

The above condition reads that u is dominated by L and denoted by u ≺ L.

(2) For each x ∈M , there exists a C1 curve γ− : (−∞, 0]→M with γ−(0) = x such that

u(x)− u(γ−(t)) =

∫ 0

t

L(γ−(s), γ̇−(s), u(γ−(s)))ds, ∀t < 0.

The curves satisfying the above equality are called (u, L, 0)-calibrated curves.

According to [15, Proposition 2.7] (see also [11, Proposition D.4]), the following statements
are equivalent: u is a backward weak KAM solution of (2.2); u is a fixed point of Tt; u is a
viscosity solution of (2.2).

Let γ : (−∞, 0] → M be a (u, L, 0)-calibrated curve. According to [15, Lemma 4.3], u
is differentiable on γ(t) for t ∈ (−∞, 0), and Du(γ(t)) = ∂L

∂ẋ
(γ(t), γ̇(t), u(γ(t))). Moreover,

since calibrated curves are minimizers, the orbit (γ(t), Du(γ(t)), u(γ(t))) satisfies the contact
Hamilton equations 

ẋ = ∂H
∂p

(x, p, u),

ṗ = −∂H
∂x

(x, p, u)− ∂H
∂u

(x, p, u)p,
u̇ = ∂H

∂p
(x, p, u) · p−H(x, p, u).

(2.3)

for t ∈ (−∞, 0), see [13, Theorem A].
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Proposition 2.1. Assume that there is k ∈ R such that H(x, 0, k) ≤ ck, where ck is the Mañé
critical value of H(x, p, k). Then for each λ ∈ R\{0}, let T λt be the semigroup defined in (2.1)
associated with the Lagrangian L(x, ẋ, λu) + ck, the uniform limit

wλ := lim
t→+∞

T λt

(
k

λ

)
exists, and is a viscosity solution of

H(x,Du(x), λu(x)) = ck, x ∈M. (2.4)

The family {wλ − k
λ
} uniformly converges to a viscosity solution w0 of

H(x,Du, k) = ck. (2.5)

Moreover, the solution w0 is the unique solution which equals to zero on the projected Aubry set
associated to (2.5).

Definition 2.2. The projected Aubry set A ⊂M associated to (2.5) can be characterized by the
following property, see [8]

x ∈ A iff any subsolutions of (2.5) is differentiable at x.

The projected Aubry set is very important in the Aubry-Mather theory and weak KAM theory, see
[6, Section 5] and [7, Section 8]. For the properties of A, one can refer to [5, Propostion 5].

If H(x, 0, k) ≤ ck, it is direct to see that the constant function ϕk := k
λ

is a viscosity
subsolution of (2.4). According to [12, Proposition 2.5], T λt ϕk is nondecreasing in t. If T λt ϕk is
bounded from above, then by [14, Proof of Theorem 1.2], the limit procedure limt→+∞ T

λ
t ϕk is

uniform, and wλ is a viscosity solution of (2.4).

In Lemmas 2.1 and 2.2, we prove that T λt ϕk is bounded from above. In Lemma 2.3, we show
that {wλ− k

λ
}|λ|≤1 is uniformly bounded and equi-Lipschitz continuous. In Lemma 2.4, we prove

that {wλ − k
λ
} uniformly converges to a solution of (2.5).

Lemma 2.1. Let A be the projected Aubry set associated with (2.5). For all y ∈ A, we have
T λt ϕk(y) = k

λ
for all t ≥ 0.

Proof. By [5, Proposition 5], for y ∈ A, there is a unique curve γ : R→ A ⊂M with γ(0) = y
such that

v(γ(b))− v(γ(a)) =

∫ b

a

[
L(γ(s), γ̇(s), k) + ck

]
ds, ∀a < b,

for any subsolution v of (2.5). Since v is differentiable onA, γ is of class C1, and H(x,Dv, k) =
ck on A, we have

Dv(γ(s)) =
∂L

∂ẋ
(γ(s), γ̇(s), k), ∀s.

Since H(x, 0, k) ≤ ck, and Dv(y) = Dw(y) for each y ∈ A and any pair v, w of subsolutions
of (2.5), we have

∂L

∂ẋ
(γ(s), γ̇(s), k) = 0, ∀s.
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Since the energy of γ equals to ck (cf. [3, 7]), we have

ck =

〈
γ̇(s),

∂L

∂ẋ
(γ(s), γ̇(s), k)

〉
γ(s)

− L(γ(s), γ̇(s), k) = −L(γ(s), γ̇(s), k).

Recall that T λt ϕk ≥ k
λ

for all t ≥ 0. By contradiction, we assume that there is t > 0 such
that T λt ϕk(y) > k

λ
. Taking the curve β(τ) = γ(τ − t) for τ ∈ [0, t]. By continuity, there is

σ ∈ [0, t) such that T λσϕk(β(σ)) = k
λ

and T λs ϕk(β(s)) > k
λ

for all s ∈ (σ, t]. By the definition of
the semigroup, we have

T λs ϕk(β(s)) ≤ T λσϕk(β(σ)) +

∫ s

σ

[
L(β(τ), β̇(τ), λT λτ ϕk(β(τ))) + ck

]
dτ

≤ k

λ
+

∫ s

σ

[
L(β(τ), β̇(τ), k) + ck + |λ|(T λτ ϕk(β(τ))− k

λ
)
]
dτ

=
k

λ
+ |λ|

∫ s

σ

(T λτ ϕk(β(τ))− k

λ
)dτ.

By the Gronwall inequality, we have T λs ϕk(β(s))− k
λ

= 0 for all s ∈ [σ, t], which contradicts
T λt ϕk(y) > k

λ
.

In the following, we denote by ‖ · ‖ the norms induced by the Riemannian metric g on both
tangent and cotangent spaces of M , and diam(M) the diameter of M .

Lemma 2.2. For all t ≥ 1, we have T λt ϕk ≤ k
λ

+ CLe
|λ|, where

CL := sup
x∈M,‖ẋ‖≤diam(M)

|L(x, ẋ, k) + ck|.

Proof. We take an arbitrary point x ∈ M . Let α : [0, 1] → M be a geodesic satisfying
α(0) = y ∈ A and α(1) = x with constant speed. Then ‖α̇‖ ≤ diam(M). Let t ≥ 1. If
T λt ϕk(x) = k

λ
, then the proof is finished. If T λt ϕk(x) > k

λ
, since T λt−1ϕk(y) = k

λ
by Lemma 2.1,

there is σ ∈ [0, 1) such that T λt−1+σϕk(α(σ)) = k
λ

and T λt−1+sϕk(α(s)) > k
λ

for all s ∈ (σ, 1]. By
the definition of the semigroup, we have

T λt−1+sϕk(α(s)) ≤ T λt−1+σϕk(α(σ)) +

∫ s

σ

[
L(α(τ), α̇(τ), λT λt−1+τϕk(α(τ))) + ck

]
dτ,

≤ k

λ
+ CL(s− σ) + |λ|

∫ s

σ

(T λt−1+τϕk(α(τ))− k

λ
)dτ.

By the Gronwall inequality we get

T λt−1+sϕk(α(s))− k

λ
≤ CLe

|λ|(s−σ) ≤ CLe
|λ|, ∀s ∈ (σ, 1].

Take s = 1, we have T λt ϕk(x) ≤ k
λ

+ CLe
|λ|.

Lemma 2.3. The family {wλ − k
λ
}|λ|≤1 is uniformly bounded and equi-Lipschitz continuous.
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Proof. By Lemma 2.2, we have

0 ≤ wλ −
k

λ
≤ CLe

|λ| ≤ CLe,

which implies that {wλ − k
λ
}|λ|≤1 is uniformly bounded.

For each x, y ∈M , we denote by d := d(x, y) the distance between them. Take a geodesic
α : [0, d] → M satisfying α(0) = x and α(d) = y with constant speed ‖α̇‖ = 1. Since
wλ ≺ L(x, ẋ, λu) + ck, we have

wλ(y)− wλ(x) ≤
∫ d

0

[
L(α(τ), α̇(τ), λwλ(α(τ))) + ck

]
dτ

≤
∫ d

0

[
L(α(τ), α̇(τ), k) + ck + |λ|(wλ −

k

λ
)
]
dτ ≤ (KL + CLe)d(x, y),

where
KL := sup

x∈M,‖ẋ‖≤1
|L(x, ẋ, k) + ck|.

Exchanging the role of x and y, the proof is complete.

Lemma 2.4. The family {wλ − k
λ
} uniformly converges to the unique viscosity solution of (2.5)

which equals to zero on A as λ→ 0.

Proof. Since the family {wλ− k
λ
}|λ|≤1 is uniformly bounded and equi-Lipschitz continuous, there

is a sequence λj converges to zero such that {wλj − k
λj
} uniformly converges to a continuous

function u∗. Since wλ solves (2.4), the function wλ − k
λ

is a viscosity solution of

H(x,Dw, λw + k) = ck.

By the stability of viscosity solutions, u∗ is a viscosity solution of (2.5). Let S∗ be the set of such
functions u∗, it is sufficient to show that S∗ is a singleton. By Lemma 2.1, wλ − k

λ
equals to zero

on A. Thus, u∗ equals to zero on A. By [6, Theorem 6.7], the viscosity solution of (2.5) which
equals to zero on A is unique.

Now we return to the proof of Theorem 1. Let

H(x, p, u) = sinx · u+ p2 + sinx− 1,

then (1.5) is equivalent to H(x, u′, λu) = 0.

Since H(x, 0, 0) ≤ 0 and the critical value of H(x, p, 0) is zero, by Proposition 2.1, the
function

uλ := lim
t→+∞

T λt ϕ0

is a viscosity solution of (1.5), where ϕ0 ≡ 0. The family {uλ} uniformly converges to the
unique viscosity solution of (1.6) which equals to zero at π/2.
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Since H(x, 0,−2) ≤ 0 and the critical value of H(x, p,−2) is zero, by Proposition 2.1, the
function

vλ := lim
t→+∞

T λt

(
−2

λ

)
is a viscosity solution of (1.5). The family {vλ + 2

λ
} uniformly converges to the unique viscosity

solution of (1.7) which equals to zero at 3π/2.

Remark 2.1. Consider the case discussed in [5], i.e.,

−λu(x) +H(x,Du(x)) = c(H), λ > 0. (2.6)

The authors proved that when H(x, 0) ≤ c(H), the minimal viscosity solution of (2.6) converges.
Let H(x, p, u) := −u + H(x, p), then H(x, 0, 0) = H(x, 0) ≤ c(H) by the assumption. Let
ϕ0 ≡ 0. In general, the solution wλ = limt→+∞ T

λ
t ϕ0 we get in Proposition 2.1 is different from

the minimal viscosity solution. Here is an example. Let r(x) be a smooth function defined on
the unit circle S1, which satisfies r(x) ≤ 0, maxx∈S1 r(x) = 0 and there is a point y such that
r(y) < 0. Let U(x) := r(x)− (r′(x))2 and H(x, p) := p2 +U(x), then c(H) = 0. Consider the
following equation

−u(x) + (u′(x))2 + U(x) = 0, (2.7)

Then r(x) itself is a classical solution of (2.7). Moreover, we have r(y) < 0 ≤ wλ(y), which
implies that wλ is not minimal.

2.2 The structure of Sλ
In the following, we define the contact Hamiltonian

Hλ(x, p, u) = λ sinx · u+ p2 + sinx− 1.

The corresponding Lagrangian is

Lλ(x, ẋ, u) = −λ sinx · u+
ẋ2

4
− sinx+ 1.

For each solution wλ of (1.5), let γ : (−∞, 0]→ S1 be a (wλ, Lλ, 0)-calibrated curve. Similar
to the analysis at the beginning of [9, Section 3.2], the derivative w′λ(γ(t)) exists for each
t ∈ (−∞, 0) and the orbit (γ(t), w′λ(γ(t)), wλ(γ(t))) satisfies the contact Hamilton equations
generated by Hλ. Then the analysis of the structure of Sλ is related to the contact Hamiltonian
flow Φt generated by Hλ.

Since wλ ∈ Sλ, we have

Hλ(γ(t), w′λ(γ(t)), wλ(γ(t))) = 0

for t ∈ (−∞, 0). We then discuss the flow on the two dimensional energy shell

M0 := {(x, p, u) ∈ T ∗S1 × R : Hλ(x, p, u) = 0}.



10 Panrui Ni

Note that along the contact Hamiltonian flow, we have dHλ
dt

= −∂Hλ
∂u
Hλ, which equals to zero

on the set M0. Thus, M0 is an invariant set under the action of Φt. Since we are interested in
the orbit (γ(t), w′λ(γ(t)), wλ(γ(t))), we then consider the flow Φt restrict on M0. The contact
Hamilton equations (2.3) then reduce to

ẋ = 2p,

ṗ = −(λ cosx · u+ cosx)− λ sinx · p,
u̇ = 2p2.

(2.8)

Lemma 2.5. The non-wandering set of Φt|M0 , which is denoted by Ω, contains only two points

P1 = (
π

2
, 0, 0), P2 = (

3π

2
, 0,−2

λ
).

Moreover, P1 and P2 are hyperbolic fixed points for the dynamical system Φt|M0 .

Proof. Suppose there is an orbit (x(t), p(t), u(t)) belongs to Ω. Since u̇ = 2p2 ≥ 0, u(t)
equals to a constant and p(t) ≡ 0. By ẋ(t) = 2p(t) = 0, x(t) also equals to a constant. By
Hλ(x, p, u) = 0 and p = 0, we have

λ sinx · u+ sinx− 1 = 0.

By p = 0 and ṗ = 0 we have
λ cosx · u+ cosx = 0.

A direct calculation shows that the non-wandering points are P1 and P2.

Near the points P1 and P2, let y = x− π/2 (resp. y = x− 3π/2), the linearised equations of
(2.8) are

ẏ = 2p, ṗ = y − λp, u̇ = 0

and
ẏ = 2p, ṗ = y + λp, u̇ = 0

respectively. A direct calculation shows that P1 and P2 are hyperbolic.

Let γ : (−∞, 0] → S1 be a (wλ, Lλ, 0)-calibrated curve. Denote by | · | the distance on S1.
We define the α-limit set of γ by

α(γ) := {x ∈ S1 : there exists a sequence tn → −∞ such that |γ(tn)− x| → 0},

Elementary knowledge of topological dynamics shows that for all sequence tn → −∞, the limit
points of the orbit (γ(tn), w′λ(γ(tn)), wλ(γ(tn))) are contained in Ω. Then the α-limit set of γ is
contained in the projection of Ω. Thus, the α-limit set of γ can only be either π/2 or 3π/2.

Lemma 2.6. Let wλ be a viscosity solution of (1.5) and k ∈ R. If wλ(xλ) ≤ k/λ for some
xλ ∈ S1, then

wλ ≤
k

λ
+ (π2 + |k + 1|+ 1)e|λ|. (2.9)
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Proof. Let x ∈ S1. If wλ(x) ≤ k/λ, then the proof is finished. So we assume wλ(x) > k/λ. Take
a geodesic α : [0, 1]→ S1 with constant speed, and α(0) = xλ, α(1) = x. Then |α̇(s)| ≤ 2π. By
continuity, there is a constant σ ∈ [0, 1) such that wλ(α(σ)) = k/λ, and wλ(α(s)) > k/λ for all
s ∈ (σ, 1]. Since uλ ≺ Lλ, we have

wλ(α(s))− wλ(α(σ)) ≤
∫ s

σ

[
α̇(τ)2

4
− sin(α(τ)) + 1− λ sin(α(τ))wλ(α(τ))

]
dτ

≤
∫ s

σ

[
π2 − (k + 1) sin(α(τ)) + 1− λ sin(α(τ))

(
wλ(α(τ))− k

λ

)]
dτ,

≤ π2 + |k + 1|+ 1 + |λ|
∫ s

σ

[
wλ(α(τ))− k

λ

]
dτ, s ∈ (σ, 1].

By the Gronwall inequality, we have

wλ(α(s))− k

λ
≤ (π2 + |k + 1|+ 1)e|λ|.

Take s = 1, we obtain (2.9).

Lemma 2.7. Let |λ| < W ( 2
π2+2

). Let wλ ∈ Sλ and γx be a (wλ, Lλ, 0)-calibrated curve with
γx(0) = x. Then one of the following cases holds:

(1) for all x ∈ S1, α(γx) = π/2;

(2) for all x ∈ S1, α(γx) = 3π/2.

Proof. We argue by contradiction. Assume that there are two points x1, x2 ∈ S1 such that
α(γx1) = π/2 and α(γx2) = 3π/2. There are two cases.

Case 1: λ > 0. By the last equality of (2.8), wλ is nondecreasing along γx1 . Thus, wλ(x1) ≥ 0.
Note that

wλ(
3π

2
) = lim

t→−∞
wλ(γx2(t)) = −2

λ
.

Take k = −2 in (2.9), we have wλ < 0 when λ < W ( 2
π2+2

), which contradicts wλ(x1) ≥ 0.

Case 2: λ < 0. By the last equality of (2.8),wλ is nondecreasing along γx2 . Thus,wλ(x2) ≥ −2/λ.
Note that

wλ(
π

2
) = lim

t→−∞
wλ(γx1(t)) = 0.

Take k = 0 in (2.9), we have wλ ≤ (π2 + 2)e−λ, which contradicts wλ(x2) ≥ −2/λ when
λ > −W ( 2

π2+2
).

Now we are going to show that wλ ∈ Sλ with wλ(π/2) = 0 is unique. Let wλ satisfy the case
(1) in Lemma 2.7. Then wλ(π/2) = 0.

We first show that wλ is unique near π/2. By the discussion above, we know that P1 is
hyperbolic, the orbit (γx(t), w

′
λ(γx(t)), wλ(γx(t))) satisfies Φt|M0 for each t ∈ (−∞, 0), and

converges to P1 as t→∞. Then the 1-graph (x,w′λ(x), wλ(x)) coincides with the local unstable
manifold of P1. Therefore, the solution wλ is unique on [π

2
− δ, π

2
+ δ] for δ > 0 small enough.
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Assume that there are two solutions u and v of (1.5) satisfying u(π/2) = v(π/2) = 0 and
u(x) > v(x) at some point x ∈ S1. Let γ be a (v, Lλ, 0)-calibrated curve with γ(0) = x. Then
the α-limit point of γ is π/2. Define t0 < 0 such that γ(t0) ∈ [π

2
− δ, π

2
+ δ], and let

G(s) := u(γ(s))− v(γ(s)), s ∈ [t0, 0].

Then G(t0) = 0 and G(0) > 0. By continuity, there is σ ∈ [t0, 0) such that G(σ) = 0 and
G(s) > 0 for all s ∈ (σ, 0]. By definition we have

u(γ(s))− u(γ(σ)) ≤
∫ s

σ

[
γ̇(τ)2

4
− sin(γ(τ)) + 1− λ sin(γ(τ))u(γ(τ))

]
dτ,

and

v(γ(s))− v(γ(σ)) =

∫ s

σ

[
γ̇(τ)2

4
− sin(γ(τ)) + 1− λ sin(γ(τ))v(γ(τ))

]
dτ,

which implies

G(s) ≤ |λ|
∫ s

σ

G(τ)dτ.

By the Gronwall inequality, we have G(s) ≡ 0 for all s ∈ (σ, 0], which contradicts u(x) > v(x).
We conclude that the solution wλ with wλ(π/2) = 0 is unique.

By a similar argument, wλ ∈ Sλ with wλ(3π/2) = −2/λ is also unique. It is direct to see that
the solution wλ satisfying wλ(π/2) = 0 (resp. wλ(3π/2) = −2/λ) coincides with the solution
uλ (resp. vλ) obtained in Section 2.1.

The proof of Theorem 1 is now complete.
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